scholarly journals Developmental and Experimental Study of Rotary Ultrasonic drilling process

Author(s):  
Arpit Srivastava

Abstract: The proper selection of machining conditions and machining parameter is an important aspect, before going to machine a brittle material by rotary ultrasonic drilling process Because these conditions will determine such important characteristics as; Material removal rate (MRR) and Surface roughness (SR). The purpose of this work is to determine the optimal values of machining parameters of rotary ultrasonic drilling process. The work has been based on the effect of three design factors: Tool feed rate, vibration frequency and grain size of abrasive particle on such characteristic like material removal rate (MRR). This work has been done by means of the technique of design of experiment (DOE), which provides us to perform the above-mentioned analysis with small number of experiments. In this work, a L9 orthogonal array is used to design the experiment. The adequate selection of machining parameters is very important in manufacturing system, because these parameters determine the surface quality and dimensional accuracy of the manufactured part. The optimal setting of the parameters are determined through experiments planned, conducted and analyzed using the Taguchi method. Keywords: RUSM, Material removal rate, Drilling, Taguchi method

Author(s):  
A.K. Parida ◽  
K.P. Maity

In the present work DEA (data envelopment analysis) coupled with Taguchi method has used for optimization in process parameters of hot turning operation. An experimental investigation has been carried out to study the effect of cutting parameters such as speed, feed and depth of cut during. The material removal rate and surface finish, are to be studied with respect to machining at 450 temperature by heating Inconel 625. In order to achieve both quality and productivity, optimization of both is necessary simultaneously. DEA –Taguchi method can employed for solving in multi-response problem. LINGO software was used to find out the relative efficiency and converted to S/N ratio using MINITAB software. The optimization of the machining parameter found at 100 m/min cutting speed, 0.15 mm/rev feed rate and 1 mm depth of cut. Depth of cut is the most influencing parameter which affect both surface finish and material removal rate in the machining process.


2015 ◽  
Vol 799-800 ◽  
pp. 343-350
Author(s):  
Rahul Shukla ◽  
Brajesh Kumar Lodhi

Wire Electric Discharge Machining (WEDM) is a non-traditional process of material from conductive material to produce parts with intricate shape and profiles. In the present work, an attempt has been made to optimization the machining conditions for maximum material removal rate, minimise kerf width based on (L9 Orthogonal Array) Taguchi method. Experiments, based on Taguchi’s parameters design, were carried out to effect of machining parameters, like pulse-on-time (TON), pulse-off-time (TOFF), peak current (IP), and wire feed (WF) on the material removal rate and kerf width. The importance of the cutting parameters on the cutting performance outputs is determined by using the variance analysis (ANOVA). The variation of MRR and kerf width with cutting parameters is modeled by using a regression analysis method.


2016 ◽  
Vol 834 ◽  
pp. 96-101 ◽  
Author(s):  
Vasile Merticaru ◽  
Andrei Mihalache ◽  
Gheorghe Nagîţ ◽  
Oana Dodun ◽  
Laurenţiu Slătineanu

One of the machining methods able to ensure a high material removal rate in the case of obtaining threaded surfaces is the whirling machining. In order to obtain a high accuracy of the machined surface and low values of the surface irregularities, an adequate selection of the machining parameters is necessary. A geometrical analysis of generating the surfaces in case of applying the whirl threading was developed. Geometrical and kinematical conditions were considered and software was used in order to modelling the process and to highlight the influence exerted by some process input factors on the machining errors and height of the surface irregularities.


2017 ◽  
Vol 13 (4) ◽  
pp. 612-627 ◽  
Author(s):  
Kanwal Jeet Singh ◽  
Inderpreet Singh Ahuja ◽  
Jathinder Kapoor

Purpose The purpose of this paper, an original research paper, is to study the optimization of material removal rate (MRR) in ultrasonic machining of polycarbonate bulletproof glass and acrylic heat-resistant glass. The machining of these materials is a very tough job. There are so many constraints which need to be taken into account while machining, but without proper knowledge of material properties and machining parameters, machining is not possible. This paper gives basic knowledge about polycarbonate bulletproof and acrylic heat-resistant glass and provides ways as to how these types of materials are processed or machined. Design/methodology/approach The Taguchi method was utilized to optimize the ultrasonic machining parameters for drilling these advanced materials. The relationship between MRR and other controllable process parameters such as concentration of slurry, type of abrasive, abrasive grit size, power rating, concentration of HF acid and type of tool material has been analyzed by using the Taguchi approach. Findings Through the Taguchi analysis, it is concluded that types of abrasive and HF acid concentrations have a significant role to play in MRR for both materials; in which, type of abrasive have 72.91 and 72.96 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. Similarly, HF acid concentration has 14.70 and 14.65 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. The MRR was improved by 34.44 percent in polycarbonate bulletproof glass and 29.25 percent in acrylic heat-resistant glass. Originality/value After experimental investigation, the results of the Taguchi modal are validated.


2014 ◽  
Vol 1016 ◽  
pp. 172-176 ◽  
Author(s):  
Sharad Kumar Pradhan ◽  
Surendra Kumar Saini

An experimental investigation into CNC turning operation on Brass C36000 alloy as work piece material which is widely used for various industrial applications is performed. Multi objective optimization is carried out to find out the influencing machining parameters among spindle speed (rpm), feed (mm per revolution) and depth of cut (mm) for CNC turning of Brass C36000 alloy with surface finish and Material Removal Rate as performance parameters using Taguchi method. Taguchi orthogonal array [L27(33)] is used for the experimental design. All experiments are conducted using EMCO Concept Turn 250 machine tool with carbide insert cutting tool. The optimization result shows that feed is the most significant turning machining parameter for surface roughness while depth of cut has high influence on material removal rate followed by spindle speed during CNC turning of Brass C36000 alloy. Above results is further validated using ANOVA approach.


2012 ◽  
Vol 626 ◽  
pp. 270-274 ◽  
Author(s):  
Milan Kumar Das ◽  
Kaushik Kumar ◽  
Tapan K. Barman ◽  
Prasanta Sahoo

This paper presents an investigation on the effect and optimization of machining parameters on material removal rate (MRR) in electrical discharge machining (EDM) of EN31 tool steel. For the experiment, four process parameters viz. pulse on time, pulse off time, discharge current and voltage are considered. The settings of machining parameters are determined by using Taguchis orthogonal array (OA). L27 orthogonal array (OA) is considered for the study. The level of importance of the machining parameters on MRR is determined by analysis of variance (ANOVA) test. The optimum machining parameter combination is obtained by the analysis of signal-to-noise (S/N) ratio. The analysis shows that discharge current has the most significant effect on MRR followed by pulse off time and voltage. It is seen that with an increase in discharge current and pulse off time, MRR increases in the studied range. The methodology described here is expected to be highly beneficial to manufacturing industries.


1995 ◽  
Vol 117 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Z. J. Pei ◽  
D. Prabhakar ◽  
P. M. Ferreira ◽  
M. Haselkorn

An approach to modeling the material removal rate (MRR) during rotary ultrasonic machining (RUM) of ceramics is proposed and applied to predicting the MRR for the case of magnesia stabilized zirconia. The model, a first attempt at predicting the MRR in RUM, is based on the assumption that brittle fracture is the primary mechanism of material removal. To justify this assumption, a model parameter (which models the ratio of the fractured volume to the indented volume of a single diamond particle) is shown to be invariant for most machining conditions. The model is mechanistic in the sense that this parameter can be observed experimentally from a few experiments for a particular material and then used in prediction of MRR over a wide range of process parameters. This is demonstrated for magnesia stabilized zirconia, where very good predictions are obtained using an estimate of this single parameter. On the basis of this model, relations between the material removal rate and the controllable machining parameters are deduced. These relationships agree well with the trends observed by experimental observations made by other investigators.


Sign in / Sign up

Export Citation Format

Share Document