Lead Retention on an Active Carbon Prepared from Date Kernels (Daglet Nour)

Author(s):  
Nora Seghairi ◽  
Fateh Barbari ◽  
Karim Mihoub

Metals occur naturally in rocks, water, air and soil and are also produced by human activities, including industrial and mining activities. For the most part, these heavy metals are hardly biodegradable, they are recognized, toxic or harmful to humans and animals. The use of activated carbon has remained for a long time and to this day the most effective adsorbent due to its high adsorption capacity mainly associated to its large specific surface. But this process is very expensive.This has therefore encouraged research by orienting them towards treatment processes using less costly and widely available natural materials. The objective of our study was to develop a simple, efficient and environmentally friendly sorption depollution technique on available and inexpensive media. We have studied the adsorption of lead on activated carbons prepared from date kernels. Batch tests were carried out with synthetic lead solution in order to study different operating parameters such as the effect of contact time, pH, initial lead concentration and adsorbent dosage. The results obtained showed that the adsorption capacity of the lead ions increase with increase in time until a saturation plateau was reached. The equilibrium was reached after a time close to 120 min and a plateau was observed from 120 to 180 min. The adsorption of lead on this adsorbent obeys the laws of Freundlich and Langmuir with a maximum capacity of 16.613 mg / g. Finally, we think that the results obtained during this study at the laboratory scale, confirm the interest practical and economical use of these two materials in the field of water treatment.

2018 ◽  
Vol 42 (17) ◽  
pp. 14612-14619 ◽  
Author(s):  
Cínthia Soares de Castro ◽  
Luísa Nagyidai Viau ◽  
Júlia Teixeira Andrade ◽  
Thais A. Prado Mendonça ◽  
Maraísa Gonçalves

Activated carbons of high mesoporosity were prepared from PET wastes and presented high adsorption capacity, including relatively large-molecule dyes.


1999 ◽  
Vol 40 (7) ◽  
pp. 109-116 ◽  
Author(s):  
M. H. Ansari ◽  
A. M. Deshkar ◽  
P. S. Kelkar ◽  
D. M. Dharmadhikari ◽  
M. Z. Hasan ◽  
...  

Steamed Hoof Powder (SHP), size < 53μ, was observed to have high adsorption capacity for Hg(II) with >95% removal from a solution containing 100 mg/L of Hg(II) with only 0.1% (W/V) concentration of SHP. The SHP has good settling properties and gives clear and odour free effluent. Studies indicate that pH values between 2 and 10 have no effect on the adsorption of Hg(II) on SHP. Light metal ions like Na+, K+, Ca2+ and Mg2+ up to concentrations of 500 mg/L and heavy metals like Cu2+, Zn2+, Cd2+, Co2+, Pb2+, Ni2+, Mn2+, Cr3+, Cr6+, Fe2+ and Fe3+ up to concentrations of 100 mg/L do not interfere with the adsorption process. Anions like sulphate, acetate and phosphate up to concentrations of 200 mg/L do not interfere. Chloride interferes in the adsorption process when Hg(II) concentration is above 9.7 mg/L. The adsorption equilibrium was established within two hours. Studies indicate that adsorption occurs on the surface sites of the adsorbent.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1540
Author(s):  
Muhammad Ahmad ◽  
Tehseen Nawaz ◽  
Mohammad Mujahid Alam ◽  
Yasir Abbas ◽  
Shafqat Ali ◽  
...  

The development of excellent drug adsorbents and clarifying the interaction mechanisms between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model. Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process. Furthermore, we highlighted the importance of the surface modification of PZS by the introduction of rGO, which tremendously increased the surface area necessary for high adsorption. Along with high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the mechanism of TC adsorption via PZS@rGO.


Sign in / Sign up

Export Citation Format

Share Document