Synthesis, Characterization and In Vitro Drug Release of Melphalan Magnetic Microspheres

2013 ◽  
Vol 22 ◽  
pp. 31-40
Author(s):  
Jin Qiao Xu ◽  
Hai Xing Xu ◽  
Zubad Newaz ◽  
Ran Li ◽  
Yu Zhang ◽  
...  

A new method of reversible association of melphalan (MEL) to magnetic Fe3O4 nanoparticles preparing MEL magnetic microspheres was developed for magnetically targeted chemotherapy. The efficacy of this approach was evaluated in terms of encapsulation efficiency (EE), drug loading content (DLC), delivery properties and cytotoxicity in vitro. Magnetic Fe3O4 nanoparticles were synthesized by co-precipitation methods and characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and magnetization measurements. The MEL magnetic microspheres were obtained through emulsion cross-linking method and characterized by FTIR, magnetization measurements and scan electron microscopy (SEM). The EE and DLC were determined using a Spectro Vision DB-18805 spectrophotometer. The MEL magnetic microspheres showed good EE values, between 60.6% and 75.6%, as well as good DLC values, between 16.7% and 32.2%, and the magnetic properties were not significantly affected by incorporation of the drug. The in vitro drug release study was carried out in phosphate buffer solution (PBS), simulating physiologic body fluid conditions at 37o C with pH = 7.4. The release profiles showed an initial fast release rate, which decreased as time progressed; about 60% of the drug was released in the first 4 h, and about 78.23 % had been released after 24 h. The results indicated that the prepared magnetic microspheres may be useful for potential applications of MEL for magnetically targeted chemotherapy.

2021 ◽  
Vol 89 (2) ◽  
pp. 25
Author(s):  
Adejumoke Lara Ajiboye ◽  
Uttom Nandi ◽  
Martin Galli ◽  
Vivek Trivedi

The aim of this study was to understand the effect of high shear homogenization (HSH) and ultrasonication (US) on the physicochemical properties of blank and olanzapine loaded nanostructured lipid carriers (NLCs) along with their drug loading potential and drug release profiles from formulated particles. NLCs were prepared with different ratios of Compritol and Miglyol as the solid and liquid lipids, respectively, under changing HSH and US times between 0 to 15 minutes. The surfactants (Poloxamer 188 (P188) and tween 80) and the drug content was kept constant in all formulations. The prepared NLCs were evaluated for particle size, polydispersity index, zeta potential, drug crystallinity and chemical interactions between lipids and OLZ. The in-vitro drug release was performed using dialysis tube method in phosphate buffer solution (PBS) at pH 7.4. The formulated NLCs were negatively charged, spherically shaped and monodisperse, with particle sizes ranging from 112 to 191 nm. There was a significant influence of US time on the preparation of NLCs in comparison to HSH, where a significant reduction in the mean particle diameter was seen after 5 min of sonication. An increase of Miglyol content in NLCs led to an increase in particle size. In general, application of US led to decrease in particle size after HSH but an increase in particle diameter of low Miglyol containing preparation was also observed with longer sonication time. OLZ was successfully encapsulated in the NLCs and a total release of 89% was achieved in 24 hours in PBS at pH 7.4.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Chunxue Zhang ◽  
Xiaoyan Yuan ◽  
Lili Wu ◽  
Jing Sheng

AbstractSubmicron poly(vinyl alcohol) (PVA) fibre mats embedded with Aspirin and bovine serum albumin (BSA) were prepared by electrospinning of their aqueous solutions. Fibre morphology was investigated by scanning electron microscopy. The composition of the fibre mats was characterized by Fourier transform IR spectroscopy and X-ray photoelectron spectroscopy. The in vitro drug release was investigated by immersing the fibre mats in phosphate buffer solution at 37°C. Results indicated that the morphology of fibre mats was influenced by the amount of drug, and more beaded and irregularly shaped fibres were found with increasing drug amounts. There were drug molecules distributed on the surface of the PVA fibres. Studies of in vitro drug release showed that both Aspirin and BSA were released more quickly from PVA fibre mats than from PVA films because of the large surface area and high porosity of the fibre mats.


2015 ◽  
Vol 645-646 ◽  
pp. 1374-1382 ◽  
Author(s):  
Rui Hua Zhang ◽  
Li Qin Li ◽  
Chen Wang ◽  
Xiao Jing Lu ◽  
Tong Shi ◽  
...  

Huperzine A (HupA), an alkaloid isolated from theChinese club moss, is a reversible inhibitor of cholinesterases which cross the blood-brain barrier and show high specificity for acetylcholinesterase (AChE). However, HupA induces unwanted side effects in an effective dose against nerve agent poisoning. In the present study, HupA–loaded poly (lactide-co-glycolide) nanoparticles (HupA-PLGA-NP) were prepared using the O/W emulsion solvent evaporation method. The results of SEM demonstrated that HupA-PLGA-NP had an spherical shape and a smooth surface without pores. It’s mean diameter and PDI were 208.5±3.6nm and 0.09±0.01 respectively. The Zeta potential was-35.3±1.8mV and the drug loading was 2.86±0.6%.In vitrodrug release studies showed that HupA-PLGA-NP had a sustained-release behavior in phosphate buffer solution, The accumulated amount of HupA was about 72.1% at 48h with a low burst release within 30min. The LD50values of HupA and HupA-PLGA-NP were 1.40 and 4.85mg/kg respectively, showing that the toxicity of HupA was reduced by 3.5 times. We evaluated the protective efficacy for different doses of HupA or HupA-PLGA-NP against 1.0×LD95(143.0μg/kg) soman toxicity. The results confirmed that HupA (0.3~0.5mg/kg) or HupA-PLGA-NP (0.5~1.5mg/kg) could ensure animals survive. However, about 10% of the animals injected with HupA (0.8mg/kg) died, while no animals died when injected with HupA-PLGA-NP (1.5mg/kg). Aim to 100% survival rate, the effective protective time (12h) of HupA-PLGA-NP (0.5mg/kg,iv) against 1.0×LD95soman toxicity in mice was significantly prolonged compared with that of HupA (4h). The study of AChE activity showed that whole-blood and supernatant of brain diluted by 80-fold and 10-fold respectively were optimum in this study. AChE inhibition after administration of HupA and HupA-PLGA-NP (0.5mg/kg,iv) was recorded and analyzed, The peak values of AChE inhibition in whole-blood and brain by HupA-PLGA-NP (17.6% and 21.8%) were lower than those by HupA (33.7% and 31.9%) and AChE inhibition time by HupA-PLGA-NP was longer than that by HupA. These data confirmed that HupA-PLGA-NP had less toxic and more longer time than HupA against 1.0×LD95soman poisoning and warrant further development as a potent medical countermeasure against chemical warfare nerve agents (CWNAs) poisoning.


2006 ◽  
Vol 514-516 ◽  
pp. 1015-1019 ◽  
Author(s):  
Rangasamy Jayakumar ◽  
Rui L. Reis ◽  
João F. Mano

N-Carboxymethyl chitosan (NCMC) is a water soluble derivative of chitosan. The NCMC beads were prepared by using ionotropic gelation process with the counter polyanion tripolyphoshate at pH 4.0 and characterized by scanning electron microscopy. The swelling behavior of the beads at different time intervals was monitored at different pH conditions. The in vitro drug release behavior in various pH solutions was studied using indomethacin as a model drug with two different concentrations (0.3 and 0.6% w/w). The release percent of indomethacin from NCMC beads was found to increase with increasing of pH in phosphate buffer solution medium due to the ionization of carboxymethyl group and high solubility of indomethacin in alkaline medium. These results indicated that the NCMC beads are useful for controlled drug delivery systems through oral administration by avoiding the drug release in the highly acidic gastric fluid region of the stomach.


2012 ◽  
Vol 482-484 ◽  
pp. 2605-2608 ◽  
Author(s):  
Li Li Ruan ◽  
Da Xin Wang ◽  
You Wei Zhang ◽  
Jiong Xin Zhao ◽  
Xiu Fang Zhang ◽  
...  

In this paper we study in vitro release of paclitaxel-loade polycaprolactone sustained-release microspheres. Different pH values release medium is used to simulate pH conditions in different parts of body, and determination the paclitaxel in Microspheres by High Performance Liquid Chromatography according Chinese Pharmacopoeia 2010. The experimental results indicate that the microspheres release rates of same drug loading content in buffer solution of pH 7.35 is the fastest, and in the pH 1.2 is the slowest. The drug release behavior according to the first-order model and it is not affected by drug loading rate of microspheres. The prepared paclitaxel-loade polycaprolactone sustained-release microspheres has good sustained release effect in different release media, and the results can provide references for further study of in vivo release.


2012 ◽  
Vol 455-456 ◽  
pp. 901-906
Author(s):  
Kui Lin Deng ◽  
Chun Yuan Huang ◽  
Xiao Bo Ren ◽  
Yu Bo Gou ◽  
Hai Bin Zhong ◽  
...  

A novel pH-sensitive poly (2-(acryloyloxy) propanoic acid) hydrogel (PAPA) synthesized from lactic acid by radical polymerization has been investigated in this work. The structure of prepared monomer2-(acryloyloxy) propanoic acid) (APA) has been characterized by FTIR and1H-NMR measurements. PAPA hydrogel demonstrated an obvious pH sensitivity in its swelling in the range of 4-7 pH of phosphate buffer solution (PBS). The rapid response of the hydrogel makes it suitable for drug delivery application. Here, salicylic acid (SA) selected as a model drug, thein-vitrodrug release as a function of pH and temperature was studied systematically. The cumulative release of salicylic acid reached up to 86.6% in pH=7.4 PBS at 37.0°C within 550min. In pH=2.1 PBS, however, only 26.6% drug was released from the pH-sensitive PAPA on the same conditions.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


2012 ◽  
Vol 62 (4) ◽  
pp. 529-545 ◽  
Author(s):  
Anuj Chawla ◽  
Pooja Sharma ◽  
Pravin Pawar

The aim of the study was to prepare site specific drug delivery of naproxen sodium using sodium alginate and Eudragit S-100 as a mucoadhesive and pH-sensitive polymer, respectively. Core microspheres of alginate were prepared by a modified emulsification method followed by cross-linking with CaCl2, which was further coated with the pH dependent polymer Eudragit S-100 (2.5 or 5 %) to prevent drug release in the upper gastrointestinal environment. Microspheres were characterized by FT-IR spectroscopy, X-ray diffraction, differential scanning calorimetry and evaluated by scanning electron microscopy, particle size analysis, drug loading efficiency, in vitro mucoadhesive time study and in vitro drug release study in different simulated gastric fluids. Stability studies of the optimized formulation were carried out for 6 months. SEM images revealed that the surface morphology was rough and smooth for core and coated microspheres, respectively. Core microspheres showed better mucoadhesion compared to coated microspheres when applied to the mucosal surface of freshly excised goat colon. The optimized batch of core microspheres and coated microspheres exhibited 98.42 ± 0.96 and 95.58 ± 0.74 % drug release, respectively. Drug release from all sodium alginate microsphere formulations followed Higuchi kinetics. Moreover, drug release from Eudragit S-100 coated microspheres followed the Korsmeyer-Peppas equation with a Fickian kinetics mechanism. Stability study suggested that the degradation rate constant of microspheres was minimal, indicating 2 years shelf life of the formulation.


1983 ◽  
Vol 29 (9) ◽  
pp. 1104-1109 ◽  
Author(s):  
D. K. Arora ◽  
A. B. Filonow ◽  
J. L. Lockwood

Erwinia herbicola, Pseudomonas fluorescens, and P. putida were strongly attracted in vitro to substances exuded by conidia of Cochliobolus victoriae and sclerotia of Macrophomina phaseolina, but not to phosphate buffer solution. Numbers of bacteria attracted to propagules of C. victoriae or M. phaseolina in an unsterilized sandy loam soil were significantly (P = 0.05) greater than background populations occurring in soil saturated with buffer. Chemotactic response was greater to C. victoriae than to M. phaseolina both in vitro and in soil. Results suggest that living fungal propagules may act as attractants for motile bacteria in soil.


Sign in / Sign up

Export Citation Format

Share Document