Formation of Defects by Stretching Gold Nanosheet - A Simulation Study

2013 ◽  
Vol 24 ◽  
pp. 146-154 ◽  
Author(s):  
Sumali Bansal ◽  
Keya Dharamvir

Under tensile deformation, gold nanosheets elongate to form defects via a series of small vacancies leading to structural deformations. Behavior of finite gold nanosheets containing 57 and 73 atoms under load are investigated modeled by many-body Gupta potential. Nanosheets with close packed structure (111) plane of a face-centered-cubic structure are stretched along one of the two symmetry directions of the plane. The accessibility of these structures and their stability under load are found to be the key factors governing the morphological evolution of the gold nanosheets. It is found that major deformation is the formation of vacancies which could be called defects in the sheets and is surprisingly different from the ultimate stretching of a nanocylinder which is via neck formation. Thus this study presents completely new theoretical results for gold nanosheets.

2013 ◽  
Vol 06 (06) ◽  
pp. 1350056 ◽  
Author(s):  
BAI LIU ◽  
LIRUI LIU

Carbon nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Their interface significantly affects the properties of the composites. Here, we show that three kinds of interfaces between crystalline Ni and CNTs exist, namely, ordered, distorted, and disordered. They presented lattice states of Ni atoms near the interface, whereas the (111) Ni plane was parallel to the CNTs' surface and appeared apart in a smaller or bigger angle. The coherent face-centered cubic (f.c.c)/hexagonal close-packed structure (h.c.p) boundary was formed between the crystalline Ni and CNTs at the ordered interface, in which the match was (111) Ni //(0001) Carbon . We suggested a dislocation model for the coherent interface. The model explained why the angle between (200) Ni and the CNTs' inner surface was 52.9° rather than the theoretical value of 54.75°. The [Formula: see text] dislocation was formed to fit the coherent relationship. Thus, Ni lattice shrinkage occurred. Further study indicated that the formation mechanism of crystalline Ni in CNTs was through heterogeneous nucleation on the inner wall surface and growth of the crystal nucleus.


Crystals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Shoki Abe ◽  
Yuui Yokota ◽  
Takayuki Nihei ◽  
Masao Yoshino ◽  
Akihiro Yamaji ◽  
...  

Co-Cr-Mo alloy fibers of 2 mm in diameter were fabricated from the melt at 1, 2, and 5 mm/min growth rates by unidirectional solidification using an alloy-micro-pulling-down (A-µ-PD) method to control the microstructure. All elements, Co, Cr, and Mo, were distributed in stripes elongated along the growth direction due to constitutional undercooling. Both Co-Cr-Mo fibers fabricated at 2 and 5 mm/min growth rates were composed of the γ phase with a face-centered cubic structure (fcc-γ phase) and ε-phase with a hexagonal close-packed structure (hcp-ε phase), and the ratio of the fcc-γ phase in the fiber fabricated at 5 mm/min growth rate was higher than that in the fiber fabricated at 2 mm/min. The results suggest that a faster growth rate increases the ratio of the fcc-γ phase in the Co-Cr-Mo fiber fabricated by unidirectional solidification.


2018 ◽  
Vol 60 (5) ◽  
pp. 978
Author(s):  
O.B. Бачурина ◽  
P.T. Мурзаев ◽  
A.C. Семенов ◽  
E.A. Корзникова ◽  
C.B. Дмитриев

AbstractDiscrete breathers (DBs) have been described among pure metals with face-centered cubic (FCC) and body-centered cubic (BCC) lattice, but for hexagonal close-packed (HCP) metals, their properties are little studied. In this paper, the properties of standing and moving DBs in beryllium HCP metal are analyzed by the molecular dynamics method using the many-body interatomic potential. It is shown that the DB is localized in a close-packed atomic row in the basal plane, while oscillations with a large amplitude along the close-packed row are made by two or three atoms, moving in antiphase with the nearest neighbors. Dependences of the DB frequency on the amplitude, as well as the velocity of the DB on its amplitude and on parameter δ, which determines the phase difference of the oscillations of neighboring atoms, are obtained. The maximum velocity of the DB movement in beryllium reaches 4.35 km/s, which is 33.7% of the velocity of longitudinal sound waves. The obtained results supplement our concepts about the mechanisms of localization and energy transport in HCP metals.


2007 ◽  
Vol 22 (9) ◽  
pp. 2416-2422 ◽  
Author(s):  
C.L. Chen ◽  
W. Lu ◽  
L.L. He ◽  
H.Q. Ye

Deformation-induced γ → DI-α2 phase transformation was verified to occur in the twin-intersection region of a Ti–45Al–8Nb (at.%) alloy compressed at room temperature. High-resolution image observations of the deformation-induced DI-α2 phase suggested that the orientation relationship between the DI-α2 and γ phases remained the typical one: (0001)DI−α2//{111}γ, [11¯20]DI−α2//〈101]γ. The conversion of stacking sequence from ordered face-centered tetragonal to ordered nonequilibrium hexagonal close-packed structure was accomplished by the movement of a/6〈11¯2] Shockley partial dislocations on every other {111}γ plane. Compositional analysis based on energy dispersive spectra revealed that the DI-α2 phase had the same composition as the matrix γ phase. No compositional diffusion occurred because the plastic deformation was carried out at room temperature. The strong stress concentration in the intersection region was the major force to induce the γ → DI-α2 phase transformation in the process of room-temperature compression.


2001 ◽  
Vol 15 (06n07) ◽  
pp. 842-850 ◽  
Author(s):  
Zuowei Wang ◽  
Haiping Fang ◽  
Zhifang Lin ◽  
Luwei Zhou

The computer simulation method has been used to study the structural formation and transition of electro-magneto-rheological (EMR) fluids under compatible electric and magnetic fields. When the fields are applied simultaneously and perpendicularly to each other, the particles rapidly arrange into two-dimensional close-packed layer structures parallel to both fields. The layers then combine together to form thicker sheer-like structures, which finally relax into three-dimensional close-packed structure with the help of the thermal fluctuations. On the other hand, if the electric field is applied firstly to induce the body-centered tetragonal (BCT) columns in the system, and then the magnetic field is applied in the perpendicular direction, the BCT to face-centered cubic (FCC) structure transition is observed in very short time. Following that, the structure keeps on evolving due to the demagnetization effect and finally form the three-dimensional close-packed structures.


2001 ◽  
Vol 704 ◽  
Author(s):  
Marie-José Casanove ◽  
Pierre Lecante ◽  
Marie-Claire Fromen ◽  
Marc Respaud ◽  
David Zitoun ◽  
...  

AbstractWe investigate the structural evolution of PtRu and CoRh ultra fine bimetallic particles as a function of their composition in the whole range of stoichiometry. Isolated particles embedded in an organic matrix are synthesized using chemical techniques in mild conditions. Their size, dispersion and structure are analyzed by HRTEM, WAXS and EXAFS techniques. The magnetic behavior of cobalt-based alloys is investigated by SQUID magnetometry. In the PtRu alloys, we demonstrate the role of composition in the structural transition from the face-centered cubic to the hexagonal close packed structure in nanoparticles and detail the mechanism of the transition. We point out the effect of size reduction and core-shell atomic distribution in the structure and the enhanced magnetization in CoRh bimetallic particles.


Sign in / Sign up

Export Citation Format

Share Document