Structural Integrity of Welded Steel Structures

1999 ◽  
Vol 167-168 ◽  
pp. 142-151 ◽  
Author(s):  
T.M. Roberts ◽  
A.W. Davies ◽  
Karen M. Holford
2014 ◽  
Vol 891-892 ◽  
pp. 1488-1493 ◽  
Author(s):  
José Azevedo ◽  
Virgínia Infante ◽  
Luisa Quintino ◽  
Jorge dos Santos

The development and application of friction stir welding (FSW) technology in steel structures in the shipbuilding industry provide an effective tool of achieving superior joint integrity especially where reliability and damage tolerance are of major concerns. Since the shipbuilding components are inevitably subjected to dynamic or cyclic stresses in services, the fatigue properties of the friction stir welded joints must be properly evaluated to ensure the safety and longevity. This research intends to fulfill a clear knowledge gap that exists nowadays and, as such, it is dedicated to the study of welded steel shipbuilding joints in GL-A36 steel, with 4 mm thick. The fatigue resistance of base material and four plates in as-welded condition (using several different parameters, tools and pre-welding conditions) were investigated. The joints culminate globally with defect-free welds, from which tensile, microhardness, and fatigue analyses were performed. The fatigue tests were carried out with a constant amplitude loading, a stress ratio of R=0.1 and frequency between 100 and 120 Hz. The experimental results show the quality of the welding process applied to steel GL-A36 which is reflected in the mechanical properties of joints tested.


2017 ◽  
Vol 741 ◽  
pp. 57-62
Author(s):  
Fumito Kawamura ◽  
Masazumi Miura ◽  
Ryuichiro Ebara ◽  
Keiji Yanase

Many studies have been conducted to characterize the fracture toughness of structural steels and their welded joints. However, most studies focus on newly developed steels, and the number of studies on the fracture toughness of long-term used steels in structural components is rather limited. Furthermore, a lack of data on the fracture toughness causes difficulties in evaluating the structural integrity of existing steel structures. In this study, CTOD tests were performed to characterize the fracture toughness of penstock that has been in service for 50 years. By measuring the critical crack tip opening displacement in conjunction with analysis for chemical compositions, the characteristics of fracture toughness were investigated.


2020 ◽  
Vol 71 ◽  
pp. 102737
Author(s):  
Tomoya Kawabata ◽  
Takehiro Inoue ◽  
Tetsuya Tagawa ◽  
Tsutomu Fukui ◽  
Yasuhito Takashima ◽  
...  

Author(s):  
Yuko Sakamoto ◽  
Koji Shirai ◽  
Toshiko Udagawa ◽  
Shunsuke Kondo

In Japan, nuclear power plants must be protected from tornado missiles that are prescribed by Nuclear Regular Authority (NRA). When evaluating the structural integrity of steel structures in the plant with impact analysis by numerical code, strain-based criteria are appropriate because the tornado missiles have huge impact energy and may cause large deformation of the structures. As one of the strain-based criteria, the Japan Society of Mechanical Engineers (JSME) prescribes limiting triaxial strain for severe accident of Pressurized Water Reactor (PWR) steel containment. To confirm whether or not this criterion is appropriate to the evaluation of the impact phenomena between the steel structures and the tornado missiles, a free drop impact experiment to steel plates (carbon steel and austenitic stainless steel) was carried out with heavy weights imitated on one of the tornado missiles, followed by an impact analysis of the experiment with AUTODYN code and the JSME strain-based criterion. Consequently, it was confirmed that the strain-based criterion of JSME standard was for evaluating the fracture of steel structures caused by tornado missiles.


Sign in / Sign up

Export Citation Format

Share Document