The fatigue life curve prediction model for welded steel structures based on local method

Author(s):  
G DEQING ◽  
Z XIAOHUA
2019 ◽  
Vol 19 ◽  
pp. 610-616
Author(s):  
Théophane Vanlemmens ◽  
Guillaume Elbel ◽  
Giovanni Meneghetti

Author(s):  
Haigen Cheng ◽  
Cong Hu ◽  
Yong Jiang

AbstractThe steel structure under the action of alternating load for a long time is prone to fatigue failure and affects the safety of the engineering structure. For steel structures in complex environments such as corrosive media and fires, the remaining fatigue life is more difficult to predict theoretically. To this end, the article carried out fatigue tests on Q420qD high-performance steel cross joints under three different working conditions, established a 95% survival rate $$S{ - }N$$ S - N curves, and analyzed the effects of corrosive media and high fire temperatures on its fatigue performance. And refer to the current specifications to evaluate its fatigue performance. The results show that the fatigue performance of the cross joint connection is reduced under the influence of corrosive medium, and the fatigue performance of the cross joint connection is improved under the high temperature of fire. When the number of cycles is more than 200,000 times, the design curves of EN code, GBJ code, and GB code can better predict the fatigue life of cross joints without treatment, only corrosion treatment, and corrosion and fire treatment, and all have sufficient safety reserve.


2014 ◽  
Vol 891-892 ◽  
pp. 1488-1493 ◽  
Author(s):  
José Azevedo ◽  
Virgínia Infante ◽  
Luisa Quintino ◽  
Jorge dos Santos

The development and application of friction stir welding (FSW) technology in steel structures in the shipbuilding industry provide an effective tool of achieving superior joint integrity especially where reliability and damage tolerance are of major concerns. Since the shipbuilding components are inevitably subjected to dynamic or cyclic stresses in services, the fatigue properties of the friction stir welded joints must be properly evaluated to ensure the safety and longevity. This research intends to fulfill a clear knowledge gap that exists nowadays and, as such, it is dedicated to the study of welded steel shipbuilding joints in GL-A36 steel, with 4 mm thick. The fatigue resistance of base material and four plates in as-welded condition (using several different parameters, tools and pre-welding conditions) were investigated. The joints culminate globally with defect-free welds, from which tensile, microhardness, and fatigue analyses were performed. The fatigue tests were carried out with a constant amplitude loading, a stress ratio of R=0.1 and frequency between 100 and 120 Hz. The experimental results show the quality of the welding process applied to steel GL-A36 which is reflected in the mechanical properties of joints tested.


Author(s):  
Geovana Drumond ◽  
Bianca Pinheiro ◽  
Ilson Pasqualino ◽  
Francine Roudet ◽  
Didier Chicot

The hardness of a material shows its ability to resist to microplastic deformation caused by indentation or penetration and is closely related to the plastic slip capacity of the material. Therefore, it could be significant to study the resistance to microplastic deformations based on microhardness changes on the surface, and the associated accumulation of fatigue damage. The present work is part of a research study being carried out with the aim of proposing a new method based on microstructural changes, represented by a fatigue damage indicator, to predict fatigue life of steel structures submitted to cyclic loads, before macroscopic cracking. Here, Berkovich indentation tests were carried out in the samples previously submitted to high cycle fatigue (HCF) tests. It was observed that the major changes in the microhardness values occurred at the surface of the material below 3 μm of indentation depth, and around 20% of the fatigue life of the material, proving that microcracking is a surface phenomenon. So, the results obtained for the surface of the specimen and at the beginning of the fatigue life of the material will be considered in the proposal of a new method to estimate the fatigue life of metal structures.


2018 ◽  
Vol 5 (10) ◽  
pp. 180951 ◽  
Author(s):  
Jingnan Zhang ◽  
Fengxian Xue ◽  
Yue Wang ◽  
Xin Zhang ◽  
Shanling Han

Aiming at the problem of the fatigue life prediction of rubber under the influence of temperature, the effects of thermal ageing and fatigue damage on the fatigue life of rubber under the influence of temperature are analysed and a fatigue life prediction model is established by selecting strain energy as a fatigue damage parameter based on the uniaxial tensile data of dumbbell rubber specimens at different temperatures. Firstly, the strain energy of rubber specimens at different temperatures is obtained by the Yeoh model, and the relationship between it and rubber fatigue life at different temperatures is fitted by the least-square method. Secondly, the function formula of temperature and model parameters is obtained by the least-square polynomial fitting. Finally, another group of rubber specimens is tested at different temperatures and the fatigue characteristics are predicted by using the proposed prediction model under the influence of temperature, and the results are compared with the measured results. The results show that the predicted value of the model is consistent with the measured value and the average relative error is less than 22.26%, which indicates that the model can predict the fatigue life of this kind of rubber specimen at different temperatures. What's more, the model proposed in this study has a high practical value in engineering practice of rubber fatigue life prediction at different temperatures.


2012 ◽  
Vol 577 ◽  
pp. 127-131 ◽  
Author(s):  
Peng Wang ◽  
Tie Yan ◽  
Xue Liang Bi ◽  
Shi Hui Sun

Fatigue damage in the rotating drill pipe in the horizontal well of mining engineering is usually resulted from cyclic bending stresses caused by the rotation of the pipe especially when it is passing through curved sections or horizontal sections. This paper studies fatigue life prediction method of rotating drill pipe which is considering initial crack in horizontal well of mining engineering. Forman fatigue life prediction model which considering stress ratio is used to predict drill string fatigue life and the corresponding software has been written. The program can be used to calculate the stress of down hole assembly, can predict stress and alternating load in the process of rotating-on bottom. Therefore, establishing buckling string fatigue life prediction model with cracks can be a good reference to both operation and monitor of the drill pipe for mining engineering.


Sign in / Sign up

Export Citation Format

Share Document