scholarly journals Definition of nominal stress-based FAT classes of complex welded steel structures using the Peak Stress Method

2019 ◽  
Vol 19 ◽  
pp. 627-636
Author(s):  
Michele Zanetti ◽  
Vittorio Babini ◽  
Giovanni Meneghetti
2019 ◽  
Vol 19 ◽  
pp. 610-616
Author(s):  
Théophane Vanlemmens ◽  
Guillaume Elbel ◽  
Giovanni Meneghetti

2014 ◽  
Vol 891-892 ◽  
pp. 1488-1493 ◽  
Author(s):  
José Azevedo ◽  
Virgínia Infante ◽  
Luisa Quintino ◽  
Jorge dos Santos

The development and application of friction stir welding (FSW) technology in steel structures in the shipbuilding industry provide an effective tool of achieving superior joint integrity especially where reliability and damage tolerance are of major concerns. Since the shipbuilding components are inevitably subjected to dynamic or cyclic stresses in services, the fatigue properties of the friction stir welded joints must be properly evaluated to ensure the safety and longevity. This research intends to fulfill a clear knowledge gap that exists nowadays and, as such, it is dedicated to the study of welded steel shipbuilding joints in GL-A36 steel, with 4 mm thick. The fatigue resistance of base material and four plates in as-welded condition (using several different parameters, tools and pre-welding conditions) were investigated. The joints culminate globally with defect-free welds, from which tensile, microhardness, and fatigue analyses were performed. The fatigue tests were carried out with a constant amplitude loading, a stress ratio of R=0.1 and frequency between 100 and 120 Hz. The experimental results show the quality of the welding process applied to steel GL-A36 which is reflected in the mechanical properties of joints tested.


Author(s):  
Zhen Li ◽  
Qiang Gao ◽  
Liangmo Wang ◽  
Jun Tang

To investigate their in-plane dynamic response, a rigid plate with mass was given an initial velocity to impact (square) honeycombs in the X1 and X2 directions, respectively. Firstly, the impact model was built and validated. Then, impact resistance capacity research was conducted. Results showed that each honeycomb performed similarly in X1 and X2 directions, and the reentrant honeycomb usually used smaller displacement and time to absorb the same amount of kinetic energy. Thus, it is better for application if these factors were the main concerns. After that, the nominal stress at the proximal and distal ends were discussed under various impact velocities. It is shown that, under impact loading, the reentrant honeycomb generally showed higher initial peak stress as well as lower plateau stress at both proximal and distal ends. In addition, combining these with the deformation process of honeycombs, it was concluded that the formation of the plateau area of the nominal stress curve is related to the crushing displacement of the impact plate as well as the collapse of cells.


2019 ◽  
Vol 125 ◽  
pp. 362-380 ◽  
Author(s):  
Giovanni Meneghetti ◽  
Alberto Campagnolo ◽  
Vittorio Babini ◽  
Matteo Riboli ◽  
Andrea Spagnoli

1999 ◽  
Vol 167-168 ◽  
pp. 142-151 ◽  
Author(s):  
T.M. Roberts ◽  
A.W. Davies ◽  
Karen M. Holford

2020 ◽  
Vol 71 ◽  
pp. 102737
Author(s):  
Tomoya Kawabata ◽  
Takehiro Inoue ◽  
Tetsuya Tagawa ◽  
Tsutomu Fukui ◽  
Yasuhito Takashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document