Synthesis and Charge-Discharge Characteristics of Polycrystalline LiNi1-xCoxO2 (0 ≤ x ≤ 0.5) as a Cathode Material for Lithium Rechargeable Batteries

2007 ◽  
Vol 280-283 ◽  
pp. 443-446 ◽  
Author(s):  
Xin Lu Li ◽  
Fei Yu Kang ◽  
Wan Ci Shen ◽  
Xiu Juan Shi

The synthesis and electrochemical characteristics of LiNi1-xCoxO2 (0 £ x £ 0.5) used as the promising cathode materials for lithium rechargeable batteries were investigated. The LiNi1-xCoxO2 was prepared by a soft chemistry route in which citric acid was used as the chelating agent to make the sol-gel precursor, then was calcined in oxygen atmosphere at the calcination temperature of 800°C for 12 h. Polycrystalline LiNi1-xCoxO2 possesses a hexagonal lattice of the α-NaFeO2 type characterized by using X-ray diffraction. The discharge capacity of LiNi0.8Co0.2O2 was 169.1 mAh/g with the efficiency of 90.5% in the first cycle and 162.1 mAh/g with only 4% capacity fading in the 10th cycle at 0.2 C rate over a potential range of 3.0-4.2 V.

2011 ◽  
Vol 399-401 ◽  
pp. 1447-1450
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The layered LiNi1/2Mn1/2O2 cathode materials were synthesized by a sol gel method. The effects of calcination temperature and time on the structural and electrochemical properties of the LiNi1/2Mn1/2O2 were investigated. The prepared samples were characterized by X-ray diffraction (XRD) and electrochemical analysis. The results revealed that the layered LiNi1/2Mn1/2O2 material could be optimal synthesized at temperature of 900°C for 10h. The sample prepared under the above conditions has the highest initial discharge capacity of 151 mAh/g and showed no dramatic capacity fading during 20 cycles between 2.5-4.5V at a current rate of 20mA/g.


2007 ◽  
Vol 124-126 ◽  
pp. 1063-1066 ◽  
Author(s):  
Jin O Song ◽  
Heung Taek Shim ◽  
Dong Jin Byun ◽  
Joong Kee Lee

Effects of substrate temperature and phosphor doping on electrochemical characteristics of the silicon film anode were investigated. The silicon thin films were synthesized directly on copper foil by radio-frequency capacitively coupled plasma-enhanced chemical-vapor deposition (r.f.-CVD). The cyclability of the silicon anode greatly depends on the surface morphology and surface resistivity. The silicon film anodes which have granular structure and high conductivity showed higher cyclabilty than those of planer and low conductivity, respectively.


2009 ◽  
Vol 113 (41) ◽  
pp. 17936-17944 ◽  
Author(s):  
C. Nithya ◽  
R. Thirunakaran ◽  
A. Sivashanmugam ◽  
G. V. M. Kiruthika ◽  
S. Gopukumar

2018 ◽  
Vol 21 (1) ◽  
pp. 051-056
Author(s):  
A. Nichelson ◽  
S. Thanikaikarasan ◽  
K. Karuppasamy ◽  
S. Karthickprabhu ◽  
T. Mahalingam ◽  
...  

A new type of lithium enriched cathode material Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 was synthesized by sol-gel method with citric acid as a chelating agent. The structural and morphological studies were systematically investigated through X-ray diffraction, SEM with EDS, FT-IR and Raman analyses. The crystallite size of the Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 cathode material was found to be 45 nm thereby leads to the feasible movement of lithium ion all through the material. FT-IR spectroscopy was used to confirm the metal-oxygen interaction in the prepared cathode material. The electrical properties of the Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 cathode material were studied by impedance and dielectric spectral analyzes. Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 showed a maximum ionic conductivity of 10-6 S/cm at ambient temperature.


2007 ◽  
Vol 55 (12) ◽  
pp. 153-160 ◽  
Author(s):  
Y. Pooarporn ◽  
A. Worayingyong ◽  
M. Wörner ◽  
P. Songsiriritthigul ◽  
A.M. Braun

Doped and undoped titanium dioxide films have been deposited on indium tin oxide glass using the sol-gel technique. The percentage of rutile in the prepared TiO2, calcined at 823 K and determined by X-ray diffraction, was 23% compared to 24% of rutile in P25-TiO2. Cerium doped TiO2 showed mainly the anatase phase, as characterised by both X-ray diffraction and Raman spectroscopy. The electrochemical and photoelectrochemical properties of the films were studied by cyclic voltammetry and electrochemical impedance spectroscopy. The (photo)electrochemical characteristics of the different films are reported and discussed.


Sign in / Sign up

Export Citation Format

Share Document