Macroporous Hydroxyapatite Scaffold Fabricated by Foam Impregnation

2005 ◽  
Vol 288-289 ◽  
pp. 565-570 ◽  
Author(s):  
Y.S. Dong ◽  
B. Liu ◽  
Ping Hua Lin ◽  
Q.G. Zhang ◽  
Yong Ping Pu

Submicron hydroxyapatite powder with particle size in the range of 80-250 nm was fabricated by sol-gel process in our laboratory. To make ceramic slurry with good flowability, the powder was mixed with binder and distilled water. The binder was consisted of acid magnesium and aluminum phosphates. The polyurethane foam was impregnated in the slurry, squeezed out the excess slurry and the composite porous body gained. Green body was dried in room temperature naturally and then moved to electric furnace and sintered at high temperature. The sintered scaffolds possess interconnected open pore structure and with a porosity of 70-85% and compressive strength 10-20 MPa, and was consisted of doped HA and other phosphates. The scaffolds were co-cultured with osteoblasts in vitro. SEM analyses revealed that the cells adhere to the ceramic surface, proliferate and growth properly. Experimental results showed that the scaffold possesses good biocompatibility and could be used in bone tissue engineering.

2004 ◽  
Vol 449-452 ◽  
pp. 1121-1124 ◽  
Author(s):  
Do Won Seo ◽  
J.G. Kim ◽  
Yun Hae Kim ◽  
Chin Myung Whang

Bioactive ORMOSILS (organically modified silicate), PDMS-CaO-SiO2-P2O5 with five different P2O5 content (0, 0.01, 0.03, 0.06, 0.09 mol%) have successfully been synthesized by sol-gel process. The hybrids have been prepared with polydimethylsiloxane (PDMS), tetraethoxysilane (TEOS), calcium nitrate tetrahydrate [Ca(NO3)2 4H2O] and triethyl phosphate (TEP) as starting materials and subsequently soaked into the simulated body fluid (SBF) for different period of time and the bioactivity of hybrids was determined by examining the apatite formation on the surface of the specimen by FT-IR, Thin-Film X-ray Diffraction, and Scanning Electron Microscopy (SEM). All of the prepared samples with different P2O5 content showed in vitro bioactivity. It was observed that the increase in P2O5 content up to 0.03 mole % increases the apatite formation compared to P2O5- free hybrids. However, further increase in P2O5 concentration slows down the formation of the apatite layer most probably due to the decrease of pH of SBF by dissolution of a large amount of phosphate ions.


2008 ◽  
Vol 47-50 ◽  
pp. 1319-1322
Author(s):  
Yang Zhao ◽  
Pei Yin ◽  
Zu Yong Wang ◽  
Lei Ren ◽  
Qi Qing Zhang

Novel hybrid biomaterial of gelatin-siloxane nanoparticles (GS NPs), with positive surface potential and lower cytotoxicity, was synthesized through a 2-step sol-gel process. The pDNA-GS NPs complex was formulated with high encapsulation efficiency, and exhibited and efficient transfection in vitro. We thus envision that the GS NPs material could serve as non-viral gene vectors for gene therapy.


2005 ◽  
Vol 284-286 ◽  
pp. 423-426 ◽  
Author(s):  
Y. Kim ◽  
B.G. Song ◽  
Soo Ryong Kim ◽  
Kwang Jin Kim

Porous hydroxyapatite coated with mesoporous silica has been utilized as the matrix for controlled drug delivery. TEM observation confirms the pore size of mesoporous silica scatters about 50 Å. Porous hydroxyapatite was coated with mesoporous silica via sol-gel process. Ibuprofen and was loaded into the pores of mesoporous silica, and controlled release profiles were studied by soaking the samples in a simulated body fluid using a UV-VIS spectrophotometer.


2017 ◽  
Vol 5 (44) ◽  
pp. 8786-8798 ◽  
Author(s):  
Anil Kumar ◽  
Sevi Murugavel ◽  
Anusha Aditya ◽  
Aldo R. Boccaccini

The development of a new generation of biomaterials includes a sol–gel process to obtain glass foams, which is a well established method for CaO–SiO2–P2O5 compositions, but is not yet recognized for Bioglass® containing sodium oxide.


2005 ◽  
Vol 284-286 ◽  
pp. 815-818
Author(s):  
Sang Bae Lee ◽  
Se Ho Lee ◽  
D.H. Kim ◽  
Doug Youn Lee ◽  
Yong Keun Lee ◽  
...  

The purpose of this study was to evaluate the cytotoxicity of alginate-encapsulting ferrite particles in vitro. Various ferrite particles such as Ba-ferrite, Sr-ferrite, Co-ferrite, Co/Ni-ferrite were prepared by sol-gel process. Ferrite particles were encapsulated via calcium alginate process with different alginate contents ranged from 10 to 100 wt%. Mouse-fibroblastic NCTC L-929 cells were cultured in RPMI-1640 medium with 10% fetal bovine serum. The alginate-encapsulating ferrites were extracted in 5 ml of distilled water under pH 6.5 at 121°C for 1 h in accordance with ISO 10993-12. In vitro cytotoxicity was evaluated by WST-1. The results of this study indicated that the alginate-encapsulting ferrite particles affected cell viability by increasing alginate contents. Especially, alginate-encapsulating process were enhanced cell viability of ferrites such as Sr-ferrite, Co/Ni-ferrite, and Ba-Ferrite when alginate content was 10 wt%.


2005 ◽  
Vol 284-286 ◽  
pp. 655-658 ◽  
Author(s):  
Kai Zhang ◽  
Newell R. Washburn ◽  
Joseph M. Antonucci ◽  
Carl G. Simon

Three dimensionally ordered macroporous sol-gel bioactive glasses (3DOM-BGs)are a type of biomaterial that is both bioactive and resorbable. In this study, 80 % SiO2 – 20 % CaO (molar fraction) 3DOM-BG particles were prepared using a colloidal crystal templating method via a sol-gel process. The as-prepared 3DOM-BG particles can quickly convert to a calcium-deficient, bone-like apatite after soaking in a simulated body fluid (SBF). MC3T3-E1 osteoblastic cells were cultured in the presence of 3DOM-BG particles. Preliminary results from cell studies showed that 3DOM-BG particles are not cytotoxic and are compatible with MC3T3-E1 osteoblast-like cells in vitro.


2007 ◽  
Vol 330-332 ◽  
pp. 67-70 ◽  
Author(s):  
Jun Ou ◽  
Guang Fu Yin ◽  
Da Li Zhou ◽  
X. C. Chen ◽  
Ya Dong Yao ◽  
...  

Merwinite powders were synthesized by a sol-gel process. The bioactivity in vitro of merwinite was investigated by soaking the powders in simulated body fluid (SBF), the growth of hydroxyapatite(HAp) on the surface of the powder was evaluated in various time. It was found that hydroxyapatite was formed after soaking for 14 days. The results indicate that merwinite possessed apatite-formation ability might be a potential candidate biomaterial for hard tissue repair.


Sign in / Sign up

Export Citation Format

Share Document