Gearbox Fault Diagnosis Using Adaptive Redundant Second Generation Wavelet

2005 ◽  
Vol 293-294 ◽  
pp. 95-102 ◽  
Author(s):  
Hongkai Jiang ◽  
Zheng Jia He ◽  
Chendong Duan ◽  
Xue Feng Chen

Vibration signals acquired from a gearbox usually are complex, and it is difficult to detect the symptoms of an inherent fault in a gearbox. In this paper, an adaptive redundant second generation wavelet (ARSGW) based on second generation wavelet (SGW) is developed. It adopts data-based optimization algorithm to design the initial prediction operator and update operator at each scale. The initial operators are interpolated with zero, and then the redundant prediction operator and update operator are obtained. The splitting step in ARSGW is removed, the approximation signal at each scale is predicted and updated with redundant prediction operator and update operator directly, and the length of approximation signal and detail signal at every scale remains the same, ARSGW eliminates translation variance of SGW. Since the redundant prediction operator and update operator lock on to the dominant structure of the signal, ARSGW can well reveal the characteristics of the signal in time domain. ARSGW is found to be very effective in detection of symptoms from the vibration signal of a large air compressor gearbox with impact rub fault. SGW is also used to analyze the same signal for comparison, no modulation signals and periodic impulses appear at any scale.

2014 ◽  
Vol 556-562 ◽  
pp. 2677-2680 ◽  
Author(s):  
Ling Jie Meng ◽  
Jia Wei Xiang

A new rolling bearing fault diagnosis approach is proposed. The original vibration signal is purified using the second generation wavelet denoising. The purified signal is further decomposed by an improved ensemble empirical mode decomposition (EEMD) method. A new selection criterion, including correlation analysis and the first two intrinsic mode functions (IMFs) with the maximum energy, is put forward to eliminate the pseudo low-frequency components. Experimental investigation show that the rolling bearing fault features can be effectively extracted.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Na Lu ◽  
Guangtao Zhang ◽  
Yuanchu Cheng ◽  
Diyi Chen

Vibration signal of rotating machinery is often submerged in a large amount of noise, leading to the decrease of fault diagnosis accuracy. In order to improve the denoising effect of the vibration signal, an adaptive redundant second-generation wavelet (ARSGW) denoising method is proposed. In this method, a new index for denoising result evaluation (IDRE) is constructed first. Then, the maximum value of IDRE and the genetic algorithm are taken as the optimization objective and the optimization algorithm, respectively, to search for the optimal parameters of the ARSGW. The obtained optimal redundant second-generation wavelet (RSGW) is used for vibration signal denoising. After that, features are extracted from the denoised signal and then input into the support vector machine method for fault recognition. The application result indicates that the proposed ARSGW denoising method can effectively improve the accuracy of rotating machinery fault diagnosis.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1704
Author(s):  
Jiaqi Xue ◽  
Biao Ma ◽  
Man Chen ◽  
Qianqian Zhang ◽  
Liangjie Zheng

The multi-disc wet clutch is widely used in transmission systems as it transfers the torque and power between the gearbox and the driving engine. During service, the buckling of the friction components in the wet clutch is inevitable, which can shorten the lifetime of the wet clutch and decrease the vehicle performance. Therefore, fault diagnosis and online monitoring are required to identify the buckling state of the friction components. However, unlike in other rotating machinery, the time-domain features of the vibration signal lack efficiency in fault diagnosis for the wet clutch. This paper aims to present a new fault diagnosis method based on multi-speed Hilbert spectrum entropy to classify the buckling state of the wet clutch. Firstly, the wet clutch is classified depending on the buckling degree of the disks, and then a bench test is conducted to obtain vibration signals of each class at varying speeds. By comparing the accuracy of different classifiers with and without entropy, Hilbert spectrum entropy shows higher efficiency than time-domain features for the wet clutch diagnosis. Thus, the classification results based on multi-speed entropy achieve even better accuracy.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012034
Author(s):  
Hai Zeng ◽  
Ning Zeng ◽  
Jin Han ◽  
Yan Ding

Abstract Engine vibration signals include strong noise and non-stationary signals. By the time domain signal processing approach, it is hard to extract the failure features of engine vibration signals, so it is hard to identify engine failures. For improving the success rate of engine failure detection, an engine angle domain vibration signal model is established and an engine fault detection approach based on the signal model is proposed. The angle domain signal model reveals the modulation feature of the engine angular signal. The engine fault diagnosis approach based on the angle domain signal model involves equal angle sampling and envelope analysis of engine vibration signals. The engine bench test verifies the effectiveness of the engine fault diagnosis approach based on the angle domain signal model. In addition, this approach indicates a new path of engine fault diagnosis and detection.


2011 ◽  
Vol 143-144 ◽  
pp. 613-617
Author(s):  
Shuang Xi Jing ◽  
Yong Chang ◽  
Jun Fa Leng

Harmonic wavelet function, with the strict box-shaped characteristic of spectrum, has strong ability of identifying signal in frequency domain, and can extract weak components form vibration signals in frequency domain. Using harmonic wavelet analysis method, the selected frequency region and other frequency components of vibration signal of mine ventilator were decomposed into independent frequency bands without any over-lapping or leaking. Simulation and diagnosis example show that this method has good fault diagnosis effect, and the ventilator fault is diagnosed successfully.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3105 ◽  
Author(s):  
Cong Dai Nguyen ◽  
Alexander Prosvirin ◽  
Jong-Myon Kim

The vibration signals of gearbox gear fault signatures are informative components that can be used for gearbox fault diagnosis and early fault detection. However, the vibration signals are normally non-linear and non-stationary, and they contain background noise caused by data acquisition systems and the interference of other machine elements. Especially in conditions with varying rotational speeds, the informative components are blended with complex, unwanted components inside the vibration signal. Thus, to use the informative components from a vibration signal for gearbox fault diagnosis, the noise needs to be properly distilled from the informational signal as much as possible before analysis. This paper proposes a novel gearbox fault diagnosis method based on an adaptive noise reducer–based Gaussian reference signal (ANR-GRS) technique that can significantly reduce noise and improve classification from a one-against-one, multiclass support vector machine (OAOMCSVM) for the fault types of a gearbox. The ANR-GRS processes the shaft rotation speed to access and remove noise components in the narrowbands between two consecutive sideband frequencies along the frequency spectrum of a vibration signal, enabling the removal of enormous noise components with minimal distortion to the informative signal. The optimal output signal from the ANR-GRS is then extracted into many signal feature vectors to generate a qualified classification dataset. Finally, the OAOMCSVM classifies the health states of an experimental gearbox using the dataset of extracted features. The signal processing and classification paths are generated using the experimental testbed. The results indicate that the proposed method is reliable for fault diagnosis in a varying rotational speed gearbox system.


2010 ◽  
Vol 439-440 ◽  
pp. 1037-1041 ◽  
Author(s):  
Yan Jue Gong ◽  
Zhao Fu ◽  
Hui Yu Xiang ◽  
Li Zhang ◽  
Chun Ling Meng

On the basis of wavelet denoising and its better time-frequency characteristic, this paper presents an effective vibration signal denoising method for food refrigerant air compressor. The solution of eliminating strong noise is investigated with the combination of soft threshold and exponential lipschitza. The good denoising results show that the presented method is effective for improving the signal noise ratio and builds the good foundation for further extraction of the vibration signals.


2014 ◽  
Vol 936 ◽  
pp. 2243-2246 ◽  
Author(s):  
Zhu Ting Yao ◽  
Hong Xia Pan

Engine is as a power machine, the operating status is good or bad, directly affects the working status of equipment. The status monitoring and fault diagnosis is very necessary to ensure that the equipment runs in its best, and improves equipment maintenance quality and efficiency. The engine failure shows the complexity and diversity of the interaction and complex relationship between the various subsystems of the engine, that is the fault of complexity, ambiguity, correlation, relativity and multiple faults coexistence. The available information are much in the engine diagnosis, for example, the vibration signal from bearings, cylinder head or cylinder block surface; oil, cooling water, pressure of intake, exhaust and fuel; temperature signal; noise, speed or oil-sample signals. In this paper, an engine as an example, engine fault diagnosis experimental system is built, the normal state, left one and right six cylinders off the oil, air filter blockage (inlet wood blockage is 30%, the inlet has screen cloth.) in the load of 2565Nm, and the speeds of 1500r/min, 1800r/min, 2200r/min are studied. The experimental results analysis, feature extraction and fault diagnosis are finished based on the time domain and frequency domain. Keywords: engine, fault diagnosis, time domain, frequency domain.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 758 ◽  
Author(s):  
Jialin Li ◽  
Xueyi Li ◽  
David He ◽  
Yongzhi Qu

Research on data-driven fault diagnosis methods has received much attention in recent years. The deep belief network (DBN) is a commonly used deep learning method for fault diagnosis. In the past, when people used DBN to diagnose gear pitting faults, it was found that the diagnosis result was not good with continuous time domain vibration signals as direct inputs into DBN. Therefore, most researchers extracted features from time domain vibration signals as inputs into DBN. However, it is desirable to use raw vibration signals as direct inputs to achieve good fault diagnosis results. Therefore, this paper proposes a novel method by stacking spare autoencoder (SAE) and Gauss-Binary restricted Boltzmann machine (GBRBM) for early gear pitting faults diagnosis with raw vibration signals as direct inputs. The SAE layer is used to compress the raw vibration data and the GBRBM layer is used to effectively process continuous time domain vibration signals. Vibration signals of seven early gear pitting faults collected from a gear test rig are used to validate the proposed method. The validation results show that the proposed method maintains a good diagnosis performance under different working conditions and gives higher diagnosis accuracy compared to other traditional methods.


Sign in / Sign up

Export Citation Format

Share Document