A Fundamental Study on Optimal Oxide Layer of Fine Diamond Wheels during ELID Grinding Process

2006 ◽  
Vol 304-305 ◽  
pp. 176-180 ◽  
Author(s):  
Y. Dai ◽  
Hitoshi Ohmori ◽  
Wei Min Lin ◽  
D. Jiang

In ELID (Electrolytic In-process Dressing) operations, the setting of starting point is quite important for reducing waste of time and for achiving high quality surface. In this study, the authors proposed a new describing mode for ELID grinding. The oxide layer formed on the wheel surface was divided to four sub-layer: porous-layer, polishing-layer, grinding-layer and interface-layer. The influence of the oxide layer on material removal rates and surface properties was investigated. It was found that, olny the oxide layer with thickness less than 24'm has capability of material removal. In ELID grinding, optimal thickness of the oxide layer is about 8~9'm. And the oxide layer with thickness of 4~9'm is suitable for grinding.

2021 ◽  
pp. 103773
Author(s):  
Ruiwen Geng ◽  
Xiaojing Yang ◽  
Qiming Xie ◽  
Jianguo Xiao ◽  
Wanqing Zhang ◽  
...  

2010 ◽  
Vol 24 (15n16) ◽  
pp. 3005-3010 ◽  
Author(s):  
KAZUTOSHI KATAHIRA ◽  
HITOSHI OHMORI ◽  
MASAYOSHI MIZUTANI ◽  
JUN KOMOTORI

To investigate the possibility of developing a new surface modification method by the combined process of ELID grinding and high-temperature oxidization, we treated ELID finished specimens and polished specimens by high-temperature oxidization in the atmosphere and performed detailed analysis to determine how the treatment would change the specimen surfaces. The ELID-series showed high quality surface roughness and excellent tribological characteristics as compared with the polished-series. The improved surface properties of the ELID-series seem to result from formation of fine, uniform structures of spinel-type multiple oxides FeCr 2 O 4 and Cr 2 O 3 on the surface by high-temperature oxidization.


2011 ◽  
Vol 301-303 ◽  
pp. 515-519
Author(s):  
Bao Ji Ma ◽  
Yin Xia Wang

Based on the analysis of formation and variation characteristics of oxide layers in ELID grinding, a new measurement principle and method for oxide layer measurement in ELID grinding was proposed. The thickness of the oxide layer was obtained based on measurement both outside surface and inner surface of the oxide layer by laser sensor and eddy current sensor. Calculation methods for measurement of the oxide layer in different ELID grinding periods were presented. In order to verify the correctness of the measurement principle and measurement method, evaluation experiments were down. Results show that the precision of the measurement is sufficient to be applied in ELID grinding.


2007 ◽  
Vol 336-338 ◽  
pp. 1469-1472 ◽  
Author(s):  
Jian Yun Shen ◽  
Wei Min Lin ◽  
Hitoshi Ohmori ◽  
Xi Peng Xu

In this study, grinding of Si3N4, SiC, and Al2O3 ceramics under the condition of electrolytic in-process dressing (ELID) system was investigated. The surface appearances of these engineering ceramics during the ELID grinding process were attentively observed to describe the formation of finely finished surfaces. Based on the analysis of material properties and detailed micro-observation of ground surfaces, it can be concluded that the material removal mechanism of engineering ceramic is closely related to its mechanical properties. The silicon nitride ceramic was most easily machined to precision surface among these three engineering ceramics.


2016 ◽  
Vol 709 ◽  
pp. 77-81 ◽  
Author(s):  
Ji Cai Kuai ◽  
Cheng Ran Jiang ◽  
Jiang Wei Wang

In this paper we analyze the forming mechanism of composite abrasive grains in oxide film on ELID grinding wheel surface, By using composition information and by taking advantage of microscale structure, we have investigated that abrasive grains surface is covered by a layer of oxide film and the fresh oxide film is loose and porous like turtle shaped crack when crushed and dried. The elements of oxide film consist of α-Fe2O3 with sphere grain of 5-50nm. This phenomena is demonstrated that the composite abrasive grains in oxide film is a compound structure which is centered by abrasive grains, with α-Fe2O3,Fe (OH)3 surrounded.


2013 ◽  
Vol 797 ◽  
pp. 73-78 ◽  
Author(s):  
Zhong De Shi ◽  
Helmi Attia

An experimental investigation is reported on the grinding of a titanium alloy using electroplated CBN wheels with water-based grinding fluid and wheel surface cleaning fluid applied at high pressures. This work was motivated by applying grinding fluid and wheel surface cleaning fluid both at high pressures for avoiding wheel loading, which is commonly seen in titanium alloy grinding. The objective is to explore the feasibility to grind titanium alloys with electroplated CBN wheels and high pressure wheel surface cleaning fluid for enhancing material removal rates. Straight surface grinding experiments were conducted on titanium alloy blocks in both shallow depth of cut and creep-feed modes. Grinding power, forces, and surface roughness were measured. Specific material removal rates of 8 mm2/s in shallow cut mode and 3 mm2/s at a depth of cut as high as 3 mm in creep-feed mode were achieved without burning and smearing of ground surfaces. It was showed that it is feasible to grind titanium alloys with electroplated CBN wheels at enhanced removal rates by applying grinding and wheel cleaning fluid at high pressures.


2010 ◽  
Vol 3 (1) ◽  
pp. 25 ◽  
Author(s):  
Indraneel Biswas ◽  
A. Senthil Kumar ◽  
Mustafizur Rahman

2018 ◽  
Author(s):  
Zewei Yuan ◽  
Kai Cheng ◽  
Yan He ◽  
Meng Zhang

The high quality surface can exhibit the irreplaceable application of single crystal silicon carbide in the fields of optoelectronic devices, integrated circuits and semiconductor. However, high hardness and remarkable chemical inertness lead to great difficulty to the smoothing process of silicon carbide. Therefore, the research presented in this paper attempts to smooth silicon carbide wafer with photocatalysis assisted chemical mechanical polishing (PCMP) by using of the powerful oxidability of UV photo-excited hydroxyl radical on surface of nano-TiO2 particles. Mechanical lapping was using for rough polishing, and a material removal model was proposed for mechanical lapping to optimize the polishing process. Several photocatalysis assisted chemical mechanical polishing slurries were compared to achieve fine surface. The theoretical analysis and experimental results indicate that the material removal rate of lapping process decreases in index form with the decreasing of abrasive size, which corresponds with the model developed. After processed with mechanical lapping for 1.5 hours and subsequent photocatalysis assisted chemical mechanical polishing for 2 hours, the silicon carbide wafer obtains a high quality surface with the surface roughness at Ra 0.528 nm The material removal rate is 0.96 μm/h in fine polishing process, which is significantly influenced by factors such as ultraviolet irradiation, electron capture agent (H2O2) and acidic environment. This combined method can effectively reduce the surface roughness and improve the polishing efficiency on silicon carbide and other hard-inert materials.


Sign in / Sign up

Export Citation Format

Share Document