Surface Behaviors of ELID Ground Engineering Ceramics

2007 ◽  
Vol 336-338 ◽  
pp. 1469-1472 ◽  
Author(s):  
Jian Yun Shen ◽  
Wei Min Lin ◽  
Hitoshi Ohmori ◽  
Xi Peng Xu

In this study, grinding of Si3N4, SiC, and Al2O3 ceramics under the condition of electrolytic in-process dressing (ELID) system was investigated. The surface appearances of these engineering ceramics during the ELID grinding process were attentively observed to describe the formation of finely finished surfaces. Based on the analysis of material properties and detailed micro-observation of ground surfaces, it can be concluded that the material removal mechanism of engineering ceramic is closely related to its mechanical properties. The silicon nitride ceramic was most easily machined to precision surface among these three engineering ceramics.

2009 ◽  
Vol 416 ◽  
pp. 492-496
Author(s):  
Hua Li Su ◽  
Jun Liu ◽  
Quan Fang Gai

It is one of the feasible methods to resolve the complex cavity processing by carrying on rotary ultrasonic grinding machining with the simple tools. On the basis of the theory processing engineering Ceramics, this paper designed the rotary ultrasonic grinding tools and analyzed the material removal mechanism by using rotary ultrasonic grinding NC engineering ceramics processing technology; and carried on a preliminary study to the rotary ultrasonic grinding processing mechanism.


2011 ◽  
Vol 314-316 ◽  
pp. 1740-1745
Author(s):  
Wei Dong Jin

Based on the analyzing ultraprecision grinding process of hard and brittle materials, taking ELID grinding of silicon nitride ceramic as an example, active control technology of passivating films state was introduced in this paper. ELID ultraprecision grinding process respectively at adaptive dynamic balance mode, discontinuous electrolyzing mode and discontinuous grinding mode had been comparatively studied. By means of AFM used for analyzing surface topography of parts, studies show that material removal method for ELID grinding is always a combination of micro brittle fracture, plastic shearing, lapping and polishing action, and which is the main material removal mode depends on the actual grinding contact state. Finally, finishing surface generating mechanism for silicon nitride in ELID ultraprecision grinding was summed up.


2013 ◽  
Vol 797 ◽  
pp. 189-195 ◽  
Author(s):  
Xun Chen ◽  
Tahsin Tecelli Öpöz

This paper presents the important characteristics of material removal mechanism during single grit scratching test. Material removal mechanism in these scratches shows cutting and ploughing action varies with the number of cutting edges leading to different cutting force and specific energy. According to experimental results, single edge scratches are more efficient cutting while multiple edge scratches give more ploughing actions, which consume energy with little contribution to materials removal. The results provided an important insight of material removal during grinding process.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 408-421
Author(s):  
Maximilian Rapp ◽  
Andrea Gommeringer ◽  
Frank Kern

Composite ceramics of stabilizer oxide coated ytterbia-samaria costabilized zirconia (1.5Yb1.5Sm-TZP) and 24–32 vol% of tungsten carbide as an electrically conductive dispersion were manufactured by hot pressing at 1300–1400 °C for 2 h at 60 MPa pressure. The materials were characterized with respect to microstructure, phase composition, mechanical properties and electrical discharge machinability by die sinking. Materials with a nanocomposite microstructure and a strength of up to 1700 MPa were obtained. An attractive toughness of 6–6.5 MPa√m is achieved as 40–50% of the zirconia transformed upon fracture. The materials show fair material removal rates of 1 mm³/min in die sinking. Smooth surfaces indicate a material removal mechanism dominated by melting.


2006 ◽  
Vol 304-305 ◽  
pp. 161-165
Author(s):  
Jian Yun Shen ◽  
Wei Min Lin ◽  
Hitoshi Ohmori ◽  
Xi Peng Xu

In the present study, zirconia ceramic, crystal and two typical natural granites were ELID ground on a precision grinding machine under the same condition. The surface appearances during the grinding process with different mesh size metal bonded diamond wheels were examined to describe the formation of finely finished granite surfaces. According to the detailed micro-observation of ground surfaces, it can be concluded that the material removal mechanism of the main mineral components for natural granites are really similar to other brittle materials during ELID grinding process. However, the differences of material performances cause the granite materials to be larger critical grain depth of cut and more ductile during finely grinding.


2004 ◽  
Vol 471-472 ◽  
pp. 26-31 ◽  
Author(s):  
Jian Xiu Su ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
X.J. Li ◽  
...  

Chemical mechanical polishing (CMP) has already become a mainstream technology in global planarization of wafer, but the mechanism of nonuniform material removal has not been revealed. In this paper, the calculation of particle movement tracks on wafer surface was conducted by the motion relationship between the wafer and the polishing pad on a large-sized single head CMP machine. Based on the distribution of particle tracks on wafer surface, the model for the within-wafer-nonuniformity (WIWNU) of material removal was put forward. By the calculation and analysis, the relationship between the motion variables of the CMP machine and the WIWNU of material removal on wafer surface had been derived. This model can be used not only for predicting the WIWNU, but also for providing theoretical guide to the design of CMP equipment, selecting the motion variables of CMP and further understanding the material removal mechanism in wafer CMP.


2021 ◽  
pp. 103773
Author(s):  
Ruiwen Geng ◽  
Xiaojing Yang ◽  
Qiming Xie ◽  
Jianguo Xiao ◽  
Wanqing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document