In Vitro Bioactivity Assessment of Metallic Magnesium

2006 ◽  
Vol 309-311 ◽  
pp. 453-456 ◽  
Author(s):  
Haydée Y. López ◽  
Dora A. Cortés-Hernández ◽  
Sergio Escobedo ◽  
D. Mantovani

In the aim to decrease the degradation rate of magnesium in simulated body fluid, pure magnesium was treated by two different routes, i) by soaking specimens in an HF aqueous solution at 30oC for 30 min and ii) by heating specimens at 345oC for 15 min. The treated samples were immersed in simulated body fluid (SBF) at 37oC for different periods of time. Samples with no treatment were also immersed in SBF. The magnesium released into the SBF, the weight loss of the specimens and the pH of SBF increased with time of immersion in all the cases. The heat treated samples showed a lower degradation rate and lower pH values. A substantial decrease of magnesium concentration in the SBF corresponding to the heat treated samples was also observed. However, the degradation rate of the heat treated samples remains being extremely high. On the other hand, a bonelike apatite layer was observed after only 3 days of immersion in SBF in all the cases. The thickness of this layer increased with time of immersion. Further research needs to be performed to decrease the degradation rate. However, these results indicate that magnesium is a highly potential bioactive material for biomedical applications.

2007 ◽  
Vol 330-332 ◽  
pp. 679-682
Author(s):  
Jin Fang Liu ◽  
Satoshi Hayakawa ◽  
Kanji Tsuru ◽  
Jian Zhong Jiang ◽  
Akiyoshi Osaka

Rutile films were deposited on polyethylene terephatalate (PET), polytetrafluoroethylene (PTFE), Silicone, poly6-caprolactam (Nylon6), polyhexamethylene adipamide (Nylon6,6) and Nylon fiber substrates using 0.03 M TiOSO4 and 0.03 M H2O2 aqueous solution at 80°C for 24 h. The rutile films exhibited excellent in vitro bioactivity as they induced apatite deposition in a simulated body fluid (SBF).


2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament


2016 ◽  
Author(s):  
S. A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin ◽  
Hamisah Ismail

Materials ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 26 ◽  
Author(s):  
Mohamed Hussein ◽  
Madhan Kumar ◽  
Robin Drew ◽  
Nasser Al-Aqeeli

2012 ◽  
Vol 06 ◽  
pp. 774-779
Author(s):  
QIAN ZHANG ◽  
X. G. Wang ◽  
PENG CAO ◽  
WEI GAO

Biodegradable stenting and implantation materials have received considerable attention in biomaterials community, with magnesium having been received most wide attention. However, magnesium corrodes too fast by nature, in human body environment. A new type of biodegradable metal – Fe and its alloys – has been introduced in recent years. In this study, a Fe 35 wt % Mn alloy was produced using powder sintering. Powder mixture was mechanically milled, pressed and then sintered to consolidate powder compacts. Microstructure characterization and hardness measurement were carried out on the as-sintered samples. In vitro degradability evaluation of the samples was performed in 5% NaCl and Simulated Body Fluid (SBF) media. The experimental results show that a higher porosity results in a higher degradation rate. All samples, with porosity being from 6.5% to 12.2 %, revealed a degradation rate from 0.6 to 1.4 mm/year.


2011 ◽  
Vol 471-472 ◽  
pp. 325-330 ◽  
Author(s):  
K. Venkateswarlu ◽  
N. Rameshbabu ◽  
Arumugam Chandra Bose ◽  
V. Muthupandi ◽  
S. Subramanian

Nanostructured titania/hydroxyapatite (HA) composite layer was developed on commercially pure titanium (Cp Ti) implant material by plasma electrolytic processing (PEP) technique in order to improve its bioactivity and corrosion resistance under physiological conditions. The phases present in the developed composite layer were studied by X-ray diffraction (XRD) technique. The surface morphology and thickness of the composite layers were observed by scanning electron microscopy (SEM). The corrosion characteristics of the developed layer were studied by potentiodynamic polarization scan under simulated body fluid (7.4 pH Hanks solution) and simulated osteoclast (4.5 pH) conditions. The in-vitro bioactivity of the composite layers was studied by using Kokubu’s simulated body fluid (SBF) solution. The X-ray diffractograms reveal the presence of anatase TiO2 and HA phases in the developed layer. The SEM results confirm the pore-free morphology of the implant material surface and the thickness of the developed composite layer was observed to be 110 ± 5 µm for 12 min of PEP. The potentiodynamic polarization study shows an improved corrosion resistance and the in-vitro bioactivity test results indicate enhanced apatite forming ability of PEP treated Cp Ti surfaces compared to that of the untreated Cp Ti, under simulated body fluid conditions.


2011 ◽  
Vol 493-494 ◽  
pp. 582-587 ◽  
Author(s):  
Marziyeh Abbasi-Shahni ◽  
Saeed Hesaraki ◽  
Ali Asghar Behnam-Ghader ◽  
Masoud Hafezi-Ardakani

In this study, nanocomposites based on of β-tri calcium phosphate (β-TCP) and 2.5-10 wt% merwinite nanoparticles were prepared and sintered at 1100-1300°c.The mechanical properties were investigated by measuring compressive strength and fracture toughness. Structural properties were evaluated by XRD, TEM and SEM analysis, and the in vitro bioactivity was studied by soaking the samples in simulated body fluid (SBF). The mechanical strength of the sintered samples wereincreased, by increasing the amount of merwinite phase up to 5 wt%, whereas it decreased when the samples were sintered at 1100 and 1200°c. Nanostructured calcium phosphate layer was formed on the surfaces of the nanocomposites within 1 day immersion in simulated body fluid. Because of appropriate mechanical properties the composite is suggested to be used as substitute for hard tissue.


2015 ◽  
Vol 105 (1) ◽  
pp. 193-203 ◽  
Author(s):  
I.V. Sukhorukova ◽  
A.N. Sheveyko ◽  
Ph. V. Kiryukhantsev‐Korneev ◽  
E.A. Levashov ◽  
D.V. Shtansky

Sign in / Sign up

Export Citation Format

Share Document