High-Rate Charge-Discharge Performance of Composite Materials of β-FeOOH Particles and Carbon Powder Prepared in the Presence of Ti(IV) Ions

2006 ◽  
Vol 320 ◽  
pp. 215-218
Author(s):  
Hideyuki Morimoto ◽  
Kazuhiko Takeno ◽  
Yuuki Uozumi ◽  
Kenichi Sugimoto ◽  
Shinichi Tobishima

Composite materials of β-FeOOH particles and carbon powder were prepared by hydrolyzing of FeCl3+Ti(SO4)2 (aq.) in which carbon powder was dispersed. β-FeOOH formed in the presence of Ti(IV) ions became amorphous and/or low crystallinity. The composite materials prepared in the presence of Ti(IV) ions worked as lithium intercalation electrodes in nonaqueous electrolytes including lithium ions. The electrodes exhibited a good cycle performance at large charge-discharge current density over 5 mA cm-2 ( 4 A g-1 per weight of active material). The composite materials are one of the promising candidates as electrode materials for energy storage devices, such as hybrid electrochemical supercapacitor, that require high-power operations.

2008 ◽  
Vol 388 ◽  
pp. 33-36
Author(s):  
Hideyuki Morimoto ◽  
Kazuhiko Takeno ◽  
Tsuyoshi Takahashi ◽  
Kensaku Hayashi ◽  
Shinichi Tobishima

Composite electrode materials of amorphous FeOOH-based particles and carbon powder were prepared by heat treatment of composite powder obtained by hydrolyzing of mixed aqueous solutions of FeCl3 and Ti(SO4)2 into which electron conducting carbon powder was dispersed. They exhibited high capacities over 150 mAh g-1 and good cycle performance at large charge-discharge current density of 5 mA cm-2 (ca. 1 A g-1). In this case, the heat treatment was effective process to improve the cycle performance.


2006 ◽  
Vol 301 ◽  
pp. 139-142 ◽  
Author(s):  
Hideyuki Morimoto ◽  
Kazuhiko Takeno ◽  
Yuuki Uozumi ◽  
Kenichi Sugimoto ◽  
Shinichi Tobishima

Composite electrode material of crystalline b-FeOOH and carbon was prepared by hydrolyzing of FeCl3 (aq.) in which carbon powder with various specific surface areas was dispersed. Composite electrode material of b-FeOOH fine particles and Ketjen black (KB:specific surface area 1270 m2 g-1) of high specific surface area exhibited the high capacity over 250 mAh g-1 per b-FeOOH weight and good cycle performances at rapid charge-discharge current density over 5 mA cm-2 (ca. 5.0 A g-1 per b-FeOOH weight) in nonaqueous electrolytes including lithium ions. Composite electrode materials of crystalline b-FeOOH and carbon are one of the promising candidates as electrode materials for energy storage devices that high-power operations are required.


2011 ◽  
Vol 196 (15) ◽  
pp. 6512-6516 ◽  
Author(s):  
Hideyuki Morimoto ◽  
Kazuhiko Takeno ◽  
Yuuki Uozumi ◽  
Ken-ichi Sugimoto ◽  
Shin-ichi Tobishima

2007 ◽  
Vol 350 ◽  
pp. 199-202 ◽  
Author(s):  
Hideyuki Morimoto ◽  
Kenji Kurita ◽  
Tetsuya Matsuda ◽  
Shinichi Tobishima

Anatase-type TiO2-based oxide gel /carbon composites were treated chemically with LiOH aqueous solution at 60 °C. The crystalline phase of treated powder was examined by powder x-ray diffraction using CuKα radiation. The main diffraction peaks may be detected as belonging to cubic LiTiO2. High-rate lithium intercalation properties of the samples were estimated in nonaqueous electrolyte including lithium ions. The composite electrodes exhibited high coulombic efficiency over 90% at first cycle and high capacities over 200 mAh g-1 after 200 cycle at large charge-discharge current density of 5.0 mA cm-2 (3.7 A g-1). The composite materials are one of the promising candidates as electrode materials for energy storage devices, such as hybrid capacitor, that require high-power operations.


2021 ◽  
Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Shiwei Song ◽  
Jian wang

Abstract Core-shell structured NiCo2S4@NiMoO4 is considered to be one of the most promising electrode materials for supercapacitors due to its high specific capacitance and excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by two-step fabricated method. The as-obtained product has high capacitance of 1102.5 F g− 1 at 1 A g− 1. The as-assembled supercapacitor has also a high energy density of 37.6 W h kg− 1 and superior cycle performance with 85% capacitance retention. The electrode materials reported here might exhibits potential applications in future energy storage devices.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6216
Author(s):  
Hamideh Darjazi ◽  
Antunes Staffolani ◽  
Leonardo Sbrascini ◽  
Luca Bottoni ◽  
Roberto Tossici ◽  
...  

The reuse and recycling of products, leading to the utilization of wastes as key resources in a closed loop, is a great opportunity for the market in terms of added value and reduced environmental impact. In this context, producing carbonaceous anode materials starting from raw materials derived from food waste appears to be a possible approach to enhance the overall sustainability of the energy storage value chain, including Li-ion (LIBs) and Na-ion batteries (NIBs). In this framework, we show the behavior of anodes for LIBs and NIBs prepared with coffee ground-derived hard carbon as active material, combined with green binders such as Na-carboxymethyl cellulose (CMC), alginate (Alg), or polyacrylic acid (PAA). In order to evaluate the effect of the various binders on the charge/discharge performance, structural and electrochemical investigations are carried out. The electrochemical characterization reveals that the alginate-based anode, used for NIBs, delivers much enhanced charge/discharge performance and capacity retention. On the other hand, the use of the CMC-based electrode as LIBs anode delivers the best performance in terms of discharge capacity, while the PAA-based electrode shows enhanced cycling stability. As a result, the utilization of anode materials derived from an abundant food waste, in synergy with the use of green binders and formulations, appears to be a viable opportunity for the development of efficient and sustainable Li-ion and Na-ion batteries.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongzheng Fang ◽  
Yingying Zhang ◽  
Chenxu Miao ◽  
Kai Zhu ◽  
Yong Chen ◽  
...  

AbstractSodium ion batteries and capacitors have demonstrated their potential applications for next-generation low-cost energy storage devices. These devices's rate ability is determined by the fast sodium ion storage behavior in electrode materials. Herein, a defective TiO2@reduced graphene oxide (M-TiO2@rGO) self-supporting foam electrode is constructed via a facile MXene decomposition and graphene oxide self-assembling process. The employment of the MXene parent phase exhibits distinctive advantages, enabling defect engineering, nanoengineering, and fluorine-doped metal oxides. As a result, the M-TiO2@rGO electrode shows a pseudocapacitance-dominated hybrid sodium storage mechanism. The pseudocapacitance-dominated process leads to high capacity, remarkable rate ability, and superior cycling performance. Significantly, an M-TiO2@rGO//Na3V2(PO4)3 sodium full cell and an M-TiO2@rGO//HPAC sodium ion capacitor are fabricated to demonstrate the promising application of M-TiO2@rGO. The sodium ion battery presents a capacity of 177.1 mAh g−1 at 500 mA g−1 and capacity retention of 74% after 200 cycles. The sodium ion capacitor delivers a maximum energy density of 101.2 Wh kg−1 and a maximum power density of 10,103.7 W kg−1. At 1.0 A g−1, it displays an energy retention of 84.7% after 10,000 cycles.


RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31807-31814 ◽  
Author(s):  
Junwei Mao ◽  
Xianhua Hou ◽  
Xinyu Wang ◽  
Guannan He ◽  
Zongping Shao ◽  
...  

The as-prepared corncob-shaped ZnFe2O4/C composite materials serve as anodes in lithium ion batteries and display high rate capability and enhanced recycling durability in comparison with pure ZnFe2O4 materials.


Sign in / Sign up

Export Citation Format

Share Document