Comparison of Material Removal Characteristics in Single and Multiple Cutting Edge Scratches

2013 ◽  
Vol 797 ◽  
pp. 189-195 ◽  
Author(s):  
Xun Chen ◽  
Tahsin Tecelli Öpöz

This paper presents the important characteristics of material removal mechanism during single grit scratching test. Material removal mechanism in these scratches shows cutting and ploughing action varies with the number of cutting edges leading to different cutting force and specific energy. According to experimental results, single edge scratches are more efficient cutting while multiple edge scratches give more ploughing actions, which consume energy with little contribution to materials removal. The results provided an important insight of material removal during grinding process.

2007 ◽  
Vol 336-338 ◽  
pp. 1469-1472 ◽  
Author(s):  
Jian Yun Shen ◽  
Wei Min Lin ◽  
Hitoshi Ohmori ◽  
Xi Peng Xu

In this study, grinding of Si3N4, SiC, and Al2O3 ceramics under the condition of electrolytic in-process dressing (ELID) system was investigated. The surface appearances of these engineering ceramics during the ELID grinding process were attentively observed to describe the formation of finely finished surfaces. Based on the analysis of material properties and detailed micro-observation of ground surfaces, it can be concluded that the material removal mechanism of engineering ceramic is closely related to its mechanical properties. The silicon nitride ceramic was most easily machined to precision surface among these three engineering ceramics.


2021 ◽  
Author(s):  
Fan Chen ◽  
Wenbo Bie ◽  
Yingli Chang ◽  
Bo Zhao ◽  
Xiaobo Wang ◽  
...  

Abstract Ceramics and other hard-and-brittle materials are very effectively processed by longitudinal-torsional coupled rotary ultrasonic machining (LTC-RUM). However, the cutting force evolution and the effects of processing parameters on the material removal mechanism in LTC-RUM need to be clarified for machining optimization. This paper proposes a cutting force model of the LTC-RUM of zirconia ceramics via the brittle material removal mechanism. Firstly, the kinematic analysis of a single abrasive grain was performed, with further consideration of the material removal volume, the effective contact time, and the impact force per one ultrasonic vibration cycle. Then, the longitudinal-torsional coupled vibration of the core tool was analyzed from the standpoint of wave energy conversion. The analytical model was finalized and experimentally verified by LTC-RUM tests. The cutting force curves predicted via the proposed model were in good agreement with the experimental results. The results obtained are considered instrumental in predicting the effects of processing parameters on cutting force during LTC-RUM of ceramics and their further optimization.


2004 ◽  
Vol 471-472 ◽  
pp. 26-31 ◽  
Author(s):  
Jian Xiu Su ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
X.J. Li ◽  
...  

Chemical mechanical polishing (CMP) has already become a mainstream technology in global planarization of wafer, but the mechanism of nonuniform material removal has not been revealed. In this paper, the calculation of particle movement tracks on wafer surface was conducted by the motion relationship between the wafer and the polishing pad on a large-sized single head CMP machine. Based on the distribution of particle tracks on wafer surface, the model for the within-wafer-nonuniformity (WIWNU) of material removal was put forward. By the calculation and analysis, the relationship between the motion variables of the CMP machine and the WIWNU of material removal on wafer surface had been derived. This model can be used not only for predicting the WIWNU, but also for providing theoretical guide to the design of CMP equipment, selecting the motion variables of CMP and further understanding the material removal mechanism in wafer CMP.


2021 ◽  
pp. 103773
Author(s):  
Ruiwen Geng ◽  
Xiaojing Yang ◽  
Qiming Xie ◽  
Jianguo Xiao ◽  
Wanqing Zhang ◽  
...  

2006 ◽  
Vol 304-305 ◽  
pp. 276-280 ◽  
Author(s):  
Y.H. Ren ◽  
Zhi Xiong Zhou ◽  
Zhao Hui Deng

Surface microgrinding of the nanostructured WC/12Co coatings have been undertaken with diamond wheels under various conditions. Nondestructive and destructive approaches were utilized to assess damage in ground nanostructured coatings. Different surface and subsurface configurations were observed by scanning electron microscopy. This paper investigates the effects of microgrinding conditions on damage formation in the surface and subsurface layers of the ground nanostructured WC/12Co coatings. And the material-removal mechanism has been discussed.


Sign in / Sign up

Export Citation Format

Share Document