Aqueous Solubilization of Paclitaxel Using Hydrotropic Polymer Micelle

2007 ◽  
Vol 342-343 ◽  
pp. 421-424 ◽  
Author(s):  
Hyun Su Min ◽  
Hong Jae Lee ◽  
Sang Cheon Lee ◽  
Kyoung Hoon Kang ◽  
Jae Hwi Lee ◽  
...  

Hydrotropic block copolymers, consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrotropic polymer, poly(2-(4-(vinyl benzyloxy)-N,N-diethylnicotinamide)) [P(VBODENA)], block, were synthesized by atom transfer radical polymerization (ATRP) for aqueous solubilization of paclitaxel, a representative poorly water-soluble drug. These polymers showed an excellent solubilizing effect for paclitaxel in aqueous media in comparison with the corresponding hydrotropic agent and a control micelle (PEG-PLA) and such effect was significantly dependent on the polymer concentration and composition. Paclitaxel could be solubilized into polymer micelles in aqueous media without use of an organic solvent. Due to their promising properties such as micellar characteristics and hydrotropic solubilization, the hydrotropic polymer micelle system can be useful for formulation of paclitaxel and other poorly soluble drugs.

2018 ◽  
Vol 8 (6-s) ◽  
pp. 5-8 ◽  
Author(s):  
Rinshi Agrawal ◽  
RK Maheshwari

Application of mixed solvency has been employed in the present research work to develop a liquisolid system (Powder formulation) of poorly water soluble drug, cefixime (as model drug). Material and Methods: For poorly water soluble drug cefixime, combination of solubilizers such as sodium acetate, sodium caprylate and propylene glycol as mixed solvent systems were used to decrease the overall concentration of solubilizers required to produce substantial increase in solubility and thereby resulting in enhanced drug loading capacity of cefixime. The procured sample of cefixime was characterized by melting point, IR, UV and DSC studies. Stability studies of liquisolid system of cefixime were performed for two months at room temperature, 30˚C and 40˚C. All the formulations were physically, chemically, and microbiologically stable. Conclusion: Mixed solvency concept has been successfully employed for enhancing the drug loading of poorly water soluble drug, cefixime. Keywords: Solubility, cefixime, liquisolid system, mixed solvency concept.


2018 ◽  
Vol 1 (1) ◽  
pp. 5-9
Author(s):  
Biresh Kumar Sarkar ◽  
Suraj Kumar Mishra ◽  
Suraj Kumar Mishra ◽  
Ajay Krishna Gupta ◽  
Shailendra S Solanki

Solubilization of poorly soluble drugs is a frequently encountered challenge in screening studies of newchemical entities as well as in formulation design and development. Solubility of some drugs is very less; thesedrug molecules are often lipophilic and hence dissolution may be a problem in drug absorption from solid oraldosage forms. The increasing interest of the technology of dosage form with natural biopolymers has becomethe reason for undertaking present investigation on the possibility of modification of guar gum application inthe preparation of an oral solid dosage form of a poorly water soluble drug. Present study examines the effect ofmodified guar gum on the solubility of a poorly water-soluble Nevirapine. Modified guar gum was preparedusing heat treatment (110-120oC for 2 hours) method. It was characterized for viscosity and swelling index etc.The physical and co-grinding mixtures of Nevirapine with modified guar gum were prepared in 1:4 drugs togum ratio. The physical and co-grinding mixtures were characterized by DSC and FT-IR study. The studiesconfirmed that there was no interaction between drug and carrier. Prepared mixtures were evaluated forsolubility study and in vitro dissolution studies. The results of present investigation indicated that modified guargum can be a used for the development of oral dosage form with increased solubility and hence improveddissolution and oral bioavailability of poorly water soluble drug.


Nano LIFE ◽  
2015 ◽  
Vol 05 (03) ◽  
pp. 1540005 ◽  
Author(s):  
Michael Graham ◽  
Yonghong Yang ◽  
Aled D Roberts ◽  
Haifei Zhang

A high percentage of developed drug compounds are poorly soluble in water, which severely limits their applications. Nanotechnology has been used to address this issue. Here we describe a simple and versatile bottom-up approach for the preparation of drug nanostructures by surface solvent evaporation on aluminum surface and polymer-coated surface. Three poorly water soluble drug compounds, including griseofulvin (GF), curcumin and antimalarial compound SL-2-25 have been investigated as model compounds. The structures are mainly characterized by scanning electronic microscopy (SEM) while the GF nanoparticles are also examined by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). A variety of structures including microassemblies composed of nanoparticles, nanospheres and nanofibers have been produced. A sonication method can be employed to produce aqueous nanoparticle suspension.


2020 ◽  
Vol 10 (1) ◽  
pp. 173-177 ◽  
Author(s):  
, Ikram ◽  
Kapil Kumar

Solid dispersion is a technique which is widely and successfully applied to improve the solubility, dissolution rates and consequently the bioavailability of poorly soluble drugs. Dispersion of one or more active ingredients (hydrophobic) is done with an inert carrier (hydrophilic) at solid-state prepared by fusion method, solvent, and melting solvent method. In this review article, we have focused on the methods of preparation, advantages, disadvantages and characterization of the solid dispersions. Keywords: Solid dispersion; dissolution; solubility.


2012 ◽  
pp. 31-35
Author(s):  
Truong Dinh Thao Tran ◽  
Ha Lien Phuong Tran ◽  
Nghia Khanh Tran ◽  
Van Toi Vo

Purposes: Aims of this study are dissolution enhancement of a poorly water-soluble drug by nano-sized solid dispersion and investigation of machenism of drug release from the solid dispersion. A drug for osteoporosis treatment was used as the model drug in the study. Methods: melting method was used to prepare the solid dispersion. Drug dissolution rate was investigated at pH 1.2 and pH 6.8. Drug crystallinity was studied using differential scanning calorimetric and powder X-ray diffraction. In addition, droplet size and contact angle of drug were determined to elucidate mechanism of drug release. Results: Drug dissolution from the solid dispersion was significantly increased at pH 1.2 and pH 6.8 as compared to pure drug. Drug crystallinity was changed to partially amorphous. Also dissolution enhancement of drug was due to the improved wettability. The droplet size of drug was in the scale of nano-size when solid dispersion was dispersed in dissolution media. Conclusions: nano-sized solid dispersion in this research was a successful preparation to enhance bioavailability of a poorly water-soluble drug by mechanisms of crystal changes, particle size reduction and increase of wet property.


Author(s):  
Meka Lingam ◽  
Vobalaboina Venkateswarlu

The low aqueous solubility of celecoxib (CB) and thus its low bioavailability is a problem.    Thus, it is suggested to improve the solubility using cosolvency and solid dispersions techniques. Pure CB has solubility of 6.26±0.23µg/ml in water but increased solubility of CB was observed with increasing concentration of cosolvents like PEG 400, ethanol and propylene glycol. Highest solubility (791.06±15.57mg/ml) was observed with cosolvency technique containing the mixture of composition 10:80:10%v/v of water: PEG 400: ethanol. SDs with different polymers like PVP, PEG were prepared and subjected to physicochemical characterization using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), solubility and dissolution studies. These studies reveals that CB exists mainly in amorphous form in prepared solid dispersions of PVP, PEG4000 and PEG6000 further it can also be confirmed by solubility and dissolution rate studies. Solid dispersions of PV5 and PV9 have shown highest saturation solubility and dissolution rate


Sign in / Sign up

Export Citation Format

Share Document