Preparation of Bi4Ti3O12 Based Thick Films by Screen Printing

2007 ◽  
Vol 350 ◽  
pp. 115-118 ◽  
Author(s):  
Tomoaki Futakuchi ◽  
Tatsunori Kakuda ◽  
Yuichi Sakai ◽  
Takashi Iijima ◽  
Masatoshi Adachi

Bi4Ti3O12 based thick films were prepared by screen printing and firing using Pt bottom electrodes and ZrO2 substrates. The influence of excess Bi2O3 as sintering aid was investigated. Furthermore, substitution of Ti-site and Bi-site for V5+ and Nd3+ was performed. Screen-printable pastes were prepared by kneading the Bi4Ti3O12 based powder and Bi2O3 powder in a three-roll mill with an organic vehicle. The microstructures and ferroelectric properties of the thick films were examined in comparison with bulk ceramics. The remanent polarization of 9.6 μC/cm2 and coercive field of 64 kV/cm were obtained for the Bi3.0Nd1.0Ti2.99V0.01O12 thick film with 10 wt% of excess Bi2O3 fired at 1200OC.

2013 ◽  
Vol 582 ◽  
pp. 55-58 ◽  
Author(s):  
Tomoaki Futakuchi ◽  
Tatsunori Kakuda ◽  
Yuichi Sakai

0.67BiFeO3-0.33BaTiO3thick films were prepared by screen printing pastes prepared by kneading the 0.67BiFeO3-0.33BaTiO3powder in a three-roll mill with an organic vehicle. The thick films were fired with Pt bottom electrodes and ZrO2substrates to investigate the influence of firing temperature. The microstructures and ferroelectric properties of the thick films were examined and compared with the bulk ceramics. A remanent polarization of 32.0 μC/cm2and coercive field of 28 kV/cm were obtained for a thick film with the addition of 0.5 wt% MnO that was fired at 1050 °C.


2008 ◽  
Vol 388 ◽  
pp. 187-190 ◽  
Author(s):  
Tomoaki Futakuchi ◽  
Tatsunori Kakuda ◽  
Yuichi Sakai ◽  
Shigeki Kakiuchi ◽  
Masatoshi Adachi

MBi4Ti4O15 (M=Ba,Ca) thick films were prepared by screen printing and firing using Pt bottom electrodes and ZrO2 substrates. Screen-printable pastes were prepared by kneading the MBi4Ti4O15 powder in a three-roll mill with an organic vehicle. The microstructures and electric properties of the thick films were examined in comparison with bulk ceramics. The remanent polarization of 6.2 9C/cm2 and coercive field of 130kV/cm were obtained for the CaBi4Ti4O15 thick film fired at 1130OC. The Curie points of MBi4Ti4O15 (M=Ba,Ca) thick films from dielectric peaks were 450OC and 790 OC for M=Ba and M= Ca.


2009 ◽  
Vol 421-422 ◽  
pp. 50-53
Author(s):  
Tatsunori Kakuda ◽  
Tomoaki Futakuchi ◽  
Tsutomu Obata ◽  
Yuichi Sakai ◽  
Masatoshi Adachi

CaBi4Ti4O15 based thick films were prepared by screen-printing method on Si substrates. Screen-printable pastes were prepared by kneading the CaBi4Ti4O15 powder in a three-roll mill with an organic vehicle. The remanent polarization of 6.3 C/cm2 and coercive field of 130kV/cm were obtained for the CaBi4Ti4O15 with Nb2O5 1wt% thick film fired at 1130°C. The cavity structure was prepared by etching of Si substrate. The displacement-electric field butterfly curves were obtained.


2009 ◽  
Vol 23 (31n32) ◽  
pp. 3785-3791
Author(s):  
SUNG-PILL NAM ◽  
HYUN-JI NOH ◽  
SUNG-GAP LEE ◽  
SEON-GI BAE ◽  
YOUNG-HIE LEE

The heterolayered BT/BNT thick films were fabricated by screen printing techniques on alumina substrates electrodes with Pt . Their structure and ferroelectric properties were investigated with the heterolayered tetragonal/rhombohedral structure composed of the BT and the BNT thick films. The structural and electrical properties of the heterolayered BT/BNT thick films were studied. The dielectric properties such as dielectric constant, loss and remanent polarization of the heterolayered BT/BNT thick films were superior to those of single composition BNT, and those values for the heterolayered BT/BNT thick films were 1455, 0.025 and 12.63 µC/cm2.


2008 ◽  
Vol 15 (01n02) ◽  
pp. 41-45
Author(s):  
SUNG-GAP LEE ◽  
HYUN-JI NOH ◽  
YOUNG-HIE LEE

Ferroelectric PbZr 0.6 Ti 0.4 O 3 (PZT) thick films were fabricated using a combination of screen-printing method and PZT precursor sol coating process (M. Koch, N. Harris, R. Maas, A. G. R. Evans, N. M. White and A. Brunnschweiler, Meas. Sci. Technol.8 (1997) 49; Y. S. Yoon, J. Korean. Phys. Soc.47 (2005) 321). Structural and electrical properties of the PZT thick films with the treatment of sol coating were investigated. The porosity decreased and the densification was enhanced with increasing the number of sol coatings. All PZT thick films showed the typical X-ray diffraction patterns of a perovskite polycrystalline structure. The thickness of all thick films was approximately 60–61 μm. The relative dielectric constant increased and dielectric loss decreased with increasing the number of sol coatings, and the values of the six-layer PZT-6 film were 167.8, 0.78% at 1 kHz, respectively. The remanent polarization and coercive field of the 6-coated PZT-6 thick films were 14.1 μC/cm2 and 20.3 kV/cm, respectively.


2007 ◽  
Vol 124-126 ◽  
pp. 663-666 ◽  
Author(s):  
Sung Gap Lee ◽  
Sang Man Park ◽  
Young Jae Shim ◽  
Young Chul Rhee

PZT(70/30) powder was prepared by a sol-gel method and PZT thick films were fabricated by the screen-printing method on the alumina substrates. The coating and drying procedure was repeated 4 times. And then the PZT(30/70) precusor solution was spin-coated on the PZT thick films. A concentration of a coating solution was 0.5 mol/L and the number of coating was varied from 0 to 6. The porosity decreased and the grain size increased with increasing the number of coatings. The thickness of the PZT-6(6: number of coatings) films was about 60~65μm. All PZT thick films showed the typical XRD patterns of a typical perovskite polycrystalline structure. The relative dielectric constant of the PZT-6 thick film was 540. The remanent polarization and coercive field of the PZT-6 film were 23.6 μC /cm2, 12.0 kV/cm, respectively.


2008 ◽  
Vol 55-57 ◽  
pp. 125-128 ◽  
Author(s):  
R. Muanghlua ◽  
S. Niemchareon ◽  
Wanwilai C. Vittayakorn ◽  
Naratip Vittayakorn

The piezoelectric ceramics of Pb(ZrxTi1−x)O3 – Pb(Zn1/3Nb2/3)O3 – Pb(Mn1/3Nb2/3)O3; PZT-PZN-PMN with Zr/Ti ratios of 48/52, 50/50 and 52/48 were fabricated in order to investigate the effect of compositional modifications on the ferroelectric properties of PZT-PZN-PMN ceramics. The phase structure of ceramics sintered at 1,150°C was analyzed. Results show that the pure perovskite phase was in all ceramic specimens, and the phase structure of PZT-PZN-PMN piezoelectric ceramics transformed from tetragonal to rhombohedral, with the Zr/Ti ratios increased in the system. The PZT-PZN-PMN ceramics with a Zr/Ti ratio of 50/50 exhibited the most promising properties including high remanent polarization and low coercive field of 25.95 µC cm−2 and 12.5 kV cm−1, respectively. Furthermore, the transition temperature decreased when the Zr/Ti ratio increased in the system.


2011 ◽  
Vol 01 (01) ◽  
pp. 119-125 ◽  
Author(s):  
W. CHEN ◽  
C. X. HUANG ◽  
T. S. YAN ◽  
W. ZHU ◽  
Z. P. LI ◽  
...  

CoFe 2 O 4/ Pb ( Zr 0.53 Ti 0.47) O 3 (abbreviated as CFO/PZT) multiferroic composite thick films were successfully fabricated on alumina substrate with gold bottom electrode by screen printing method at a low-sintering temperature. The processing included the modification and dispersion of ferromagnetic CFO powder and ferroelectric PZT powder, the preparation of uniform pastes, and the selection of proper annealing temperature for composite thick films. Transmission electron microscopic pictures (TEM) indicated the submicron meter of particles size for both CFO and PZT particles. After annealing at 900°C for 1 h in air, tape test confirmed the quality of multiferroic thick films as well as pure CFO and PZT films. X-ray diffraction (XRD) showed a coexistence of CFO and PZT phases; furthermore, a smooth surface was observed through scanning electron microscopic (SEM) pictures along with the sharp cross-sectional picture, indicative of 100 μm of film thickness. Ferromagnetic and ferroelectric properties were observed in CFO/PZT films simultaneously at room temperature. Compared with the reported CFO/PZT multiferrroic thin films, the present ferromagnetic property was closing to that of the chemical sol-gel synthesized film and even that from the physical pulsed laser deposition technique. However, the ferroelectric property showed a degenerated behavior, possible reasons for this was discussed and further optimization was also proposed for the potential multifunctional application.


2011 ◽  
Vol 412 ◽  
pp. 306-309
Author(s):  
Chong Qing Huang ◽  
Min Chen ◽  
X.A. Mei ◽  
Y.H. Sun ◽  
J. Liu

The ferroelectricity of Bi3.25Dy0.75Ti3O12(BDT), and Bi3.25Dy0.75Ti2.97V0.03O12(BDTV) ceramics prepared at 1100°C by a conventional ceramic technique was investigated. These ceramics possess random-oriented polycrystalline structure. The remanent polarization (Pr) and coercive field (Ec) of the BDT ceramics are 15 µC/cm2and 64kV/cm, respectively. Furthermore, V substitution improves the Prvalue of the BDT ceramics up to 23 μC/cm2, which is much larger than that of the BDT ceramics. Therefore, co-sustitution of D and V in Bi4Ti3O12(BIT) ceramic is effective for the improvement of its ferroelectricity.


2008 ◽  
Vol 368-372 ◽  
pp. 1814-1816
Author(s):  
Dan Xie ◽  
Zhi Gang Zhang ◽  
Tian Ling Ren ◽  
Li Tian Liu

{0.75SrBi2Ta2O9-0.25Bi3TiTaO9}(SBT-BTT) thin films were prepared by the modified metalorganic solution deposition (MOSD) technique. The microstructure and ferroelectric properties of SBTBTT thin films were studied. The SBT-BTT thin films were produced at 750°C. The grain size and surface roughness of SBT-BTT films showed significant enhancement with an increase in annealing temperatures. It is found that SBT-BTT thin films have good ferroelectric properties. The measured remanent polarization values for SBT-BTT, SBT and BTT capacitors were 15, 7.5 and 4.8μC/cm2, respectively. The coercive field for SBT-BTT capacitors was 50kV/cm. More importantly, the polarization of SBT-BTT capacitors only decreased 5% after 1011 switching cycles at a frequency of 1MHz.


Sign in / Sign up

Export Citation Format

Share Document