High Frequency Dielectric Permittivity Measurement of Dielectric Layer of MLCC Using Non-Contact Probe

2007 ◽  
Vol 350 ◽  
pp. 243-246
Author(s):  
Hirofumi Kakemoto ◽  
Jianyong Li ◽  
Takakiyo Harigai ◽  
Song Min Nam ◽  
Satoshi Wada ◽  
...  

Direct observations for high frequency microscopic dielectric distributions in cross sections of a multi-layer ceramic capacitor were carried out using non-contact type microwave probe. The measured data were imaged from the raw data and rounding data process. Using microwave reflection intensity mappings from cross sections of multi-layer ceramic capacitor, the dielectric permittivity distribution in micro-region of a multi-layer ceramic capacitor was measured at room temperature. The spatial resolution was experimentally estimated to be about 10 μm from mappings of the dielectric and inner electrode layers in a multi-layer ceramic capacitor.

2006 ◽  
Vol 966 ◽  
Author(s):  
Hirofumi Kakemoto ◽  
Jianyong Li ◽  
Takakiyo Harigai ◽  
Song-Min Nam ◽  
Satoshi Wada ◽  
...  

ABSTRACTDirect observations for high frequency microscopic dielectric distributions in cross sections of a multi-layer ceramic capacitor were carried out using non-contact type microwave probe. The measured data were imaged from the raw data and rounding data process. Using microwave reflection intensity mappings from cross sections of multi-layer ceramic capacitor, the dielectric permittivity distribution in micro-region of a multi-layer ceramic capacitor was measured at room temperature. The spatial resolution was experimentally estimated to be about 10 μm from mappings of the dielectric and inner electrode layers in a multi-layer ceramic capacitor.


Author(s):  
Hirofumi Kakemoto ◽  
Jianyong Li ◽  
Takakiyo Harigai ◽  
Song Min Nam ◽  
Satoshi Wada ◽  
...  

2006 ◽  
Vol 320 ◽  
pp. 189-192
Author(s):  
Hirofumi Kakemoto ◽  
Song Min Nam ◽  
Satoshi Wada ◽  
Takaaki Tsurumi

The microwave reflection intensity was measured at room temperature for Cu-plate, Al2O3 and SrTiO3 single crystals using a un-contact probe as a function of distance between sample and probe. The difference of reflection intensity for Cu-plate, Al2O3 and SrTiO3 single crystals was observed in the region where the distance of 0.2mm between sample and probe, and it was caused from dielectric permittivities of samples. The reflection coefficient of sample was estimated in comparison with results of electromagnetic simulation using finite differential time domain method. The reflection intensity for Cu-plate, Al2O3 and SrTiO3 single crystals was transformed to dielectric permittivity at reflection intensity minimum point. The dielectric permittivity mapping was also examined at reflection intensity minimum point.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4017
Author(s):  
Dorota Szwagierczak ◽  
Beata Synkiewicz-Musialska ◽  
Jan Kulawik ◽  
Norbert Pałka

New ceramic materials based on two copper borates, CuB2O4 and Cu3B2O6, were prepared via solid state synthesis and sintering, and characterized as promising candidates for low dielectric permittivity substrates for very high frequency circuits. The sintering behavior, composition, microstructure, and dielectric properties of the ceramics were investigated using a heating microscope, X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and terahertz time domain spectroscopy. The studies revealed a low dielectric permittivity of 5.1–6.7 and low dielectric loss in the frequency range 0.14–0.7 THz. The copper borate-based materials, owing to a low sintering temperature of 900–960 °C, are suitable for LTCC (low temperature cofired ceramics) applications.


2017 ◽  
Vol 34 (4) ◽  
pp. 040701
Author(s):  
Zhen Yuan ◽  
Jin-Long Zhu ◽  
Shao-Min Feng ◽  
Chang-Chun Wang ◽  
Li-Juan Wang ◽  
...  

Author(s):  
Kevin O’Shea

Abstract The use of finite element analysis (FEA) in high frequency (20–40 kHz), high power ultrasonics to date has been limited. Of paramount importance to the performance of ultrasonic tooling (horns) is the accurate identification of pertinent modeshapes and frequencies. Ideally, the ultrasonic horn will vibrate in a purely axial mode with a uniform amplitude of vibration. However, spurious resonances can couple with this fundamental resonance and alter the axial vibration. This effect becomes more pronounced for ultrasonic tools with larger cross-sections. The current study examines a 4.5″ × 6″ cross-section titanium horn which is designed to resonate axially at 20 kHz. Modeshapes and frequencies from 17–23 kHz are examined experimentally and using finite element analysis. The effect of design variables — slot length, slot width, and number of slots — on modeshapes and frequency spacing is shown. An optimum configuration based on the finite element results is prescribed. The computed results are compared with actual prototype data. Excellent correlation between analytical and experimental data is found.


Author(s):  
Luis A. Morocho ◽  
Leonidas B. Peralta ◽  
Luis F. Guerrero-Vásquez ◽  
Jorge O. Ordoñez-Ordoñez ◽  
Juan P. Bermeo ◽  
...  

Geophysics ◽  
1994 ◽  
Vol 59 (8) ◽  
pp. 1201-1210 ◽  
Author(s):  
Duff C. Stewart ◽  
Walter L. Anderson ◽  
Thomas P. Grover ◽  
Victor F. Labson

A new instrument designed for frequency‐domain sounding in the depth range 0–10 m uses short coil spacings of 5 m or less and a frequency range of 300 kHz to 30 MHz. In this frequency range, both conduction currents (controlled by electrical conductivity) and displacement currents (controlled by dielectric permittivity) are important. Several surface electromagnetic survey systems commonly used (generally with frequencies less than 60 kHz) are unsuitable for detailed investigation of the upper 5 m of the earth or, as with ground‐penetrating radar, are most effective in relatively resistive environments. Most computer programs written for interpretation of data acquired with the low‐frequency systems neglect displacement currents, and are thus unsuited for accurate high‐frequency modeling and interpretation. New forward and inverse computer programs are described that include displacement currents in layered‐earth models. The computer programs and this new instrument are used to evaluate the effectiveness of shallow high‐frequency soundings based on measurement of the tilt angle and the ellipticity of magnetic fields. Forward model studies indicate that the influence of dielectric permittivity provides the ability to resolve thin layers, especially if the instrument frequency range can be extended to 50 MHz. Field tests of the instrument and the inversion program demonstrate the potential for detailed shallow mapping wherein both the resistivity and the dielectric permittivity of layers are determined. Although data collection and inversion are much slower than for low‐frequency methods, additional information is obtained inasmuch as there usually is a permittivity contrast as well as a resistivity contrast at boundaries between different materials. Determination of dielectric permittivity is particularly important for hazardous waste site characterization because the presence of some contaminants may have little effect on observed resistivity but a large effect on observed permittivity.


Sign in / Sign up

Export Citation Format

Share Document