Characterization and In Vivo Studies of Nanothickness Ca- and P-Based Coatings

2007 ◽  
Vol 361-363 ◽  
pp. 649-652
Author(s):  
Paulo Guilherme Coelho ◽  
Marcelo Suzuki ◽  
C.A.O. Fernandes ◽  
G. Cardaropoli

Objective: This series of laboratorial and in-vivo studies describe the characterization, evolution, and in-vivo performance of various Ca- and P-based nanothicknesses and microstructures ion beam assisted depositions (IBAD) onto Ti-6Al-4V implants. Materials and Methods: Characterization- The 4 mm in diameter and 10 mm in length implant rods (Ti-6Al-4V) with IBAD I, IBAD II, and control (alumina-blasted/acid-etched, AB/AE) surfaces were provided by an implant manufacturer. The in-vitro characterization comprised the following techniques: (1) SEM/EDS, (2) XPS/Depth Profiling (3) Thin-film XRD (4) AFM + ToF-SIMS for coating thickness determination (5) AFM- Ra determination. In-vivo- Three animal experiments were carried out for evaluation of the nanothickness bioceramic coatings. All experiments comprised a proximal tibia model with 4-6 implants placed along the bones. Times in-vivo ranged from 2-5 weeks. Static (bioactivity, bone to implant contact) and dynamic (mineral apposition rates- MAR) histomorphometric measurements were recorded. Biomechanical testing was performed by pullout and torque to interfacial failure testing. Results: Combination of the characterization techniques showed that all bioceramic coatings were Ca- and P-based bioceramics of amorphous microstructure. AFM +ToF-SIMS showed that IBAD II coatings were thicker (300-500 nm) compared to IBAD I coatings (30-50 nm). Surface roughness did not change significantly for the IBAD implant groups compared to control. The in-vivo results showed higher degrees of osseoactivity, torque to failure, and MAR for the coated implants at different times in-vivo. IBAD II had higher biomechanical fixation at early implantation times compared to other groups. Conclusions: The results obtained in the in-vitro part this study support that both IBAD I and IBAD II coatings are Ca- and P- based amorphous bioceramics in the nanothickness range with theoretical high dissolution rates. The increased osseoactivity observed for IBAD coated and the high MAR values observed for IBAD coated compared to AB/AE implants support the effect of the bioceramic coating presence in the overall bone healing. A thickness effect was reveled through biomechanical testing where IBAD II (300-500nm thickness) presented higher performance.

2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Mu ◽  
Huisheng Ma ◽  
Hong Chen ◽  
Xiaoxia Zhang ◽  
Mengyi Ye

The aim of this study was to investigate the role of luteolin in the mechanism of ultraviolet radiation B (UVB)-induced photoaging. An in vivo photoaging model was established using UVB irradiation of bare skin on the back of rats, and an in vitro photoaging model was established using UVB irradiation of human dermal fibroblasts (HDF). Skin damage was observed using hematoxylin-eosin (HE) and Masson staining, skin and cellular reactive oxygen species (ROS) levels were detected by DHE and DCF fluorescent probes, mitochondrial membrane potential was detected by JC-1 staining, and protein expressions were detected by immunofluorescence and Western Blot. Results from animal experiments showed that luteolin reduced UVB-induced erythema and wrinkle formation. Results from cellular assays showed that luteolin inhibited UVB-induced decrease in cell viability. In addition, in vitro and in vivo experiments showed that luteolin reduced oxidative stress levels, decreased activation of matrix metalloproteinases (MMPs) and increased collagen expression. Continued cellular experiments using 3-TYP, an inhibitor of Sirtuin 3 (SIRT3), revealed a loss of cellular protection by luteolin and a decrease in collagen, suggesting that luteolin acts by targeting and promoting SIRT3. luteolin is involved in the protection of skin cells against UVB radiation-induced ageing via the SIRT3/ROS/mitogen-activated protein kinases (MAPK) axis and it may be a promising therapeutic agent for the prevention of UVB photoaging.


2012 ◽  
Vol 46 (3) ◽  
pp. 212-222 ◽  
Author(s):  
Mark Tatterton ◽  
Stacy-Paul Wilshaw ◽  
Eileen Ingham ◽  
Shervanthi Homer-Vanniasinkam

Background. Thrombosis of synthetic small-diameter bypass grafts remains a major problem. The aim of this article is to review the antithrombotic strategies that have been used in an attempt to reduce graft thrombogenicity. Methods. A PubMed/MEDLINE search was performed using the search terms “vascular graft thrombosis,” “small-diameter graft thrombosis,” “synthetic graft thrombosis” combined with “antithrombotic,” “antiplatelet,” “anticoagulant,” “Dacron,” “PTFE,” and “polyurethane.” Results. The majority of studies on antithrombotic therapies have used either in vitro models or in vivo animal experiments. Many of the therapies used in these settings do show antithrombotic efficacy against synthetic graft materials. There is however, a distinct lack of human in vivo studies to further delineate the performance and limitations of therapies displaying good antithrombotic characteristics. Conclusion. Very few antithrombotic therapies have translated into clinical use. More human in vivo studies are required to assess the efficacy and safety of such therapies.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document