scholarly journals A Miniature Optical Force Dual-Axis Accelerometer Based on Laser Diodes and Small Particles Cavities

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1375
Author(s):  
Junji Pu ◽  
Kai Zeng ◽  
Yulie Wu ◽  
Dingbang Xiao

In recent years, the optical accelerometer based on the optical trapping force effect has gradually attracted the attention of researchers for its high sensitivity and high measurement accuracy. However, due to its large size and the complexity of optical path adjustment, the optical force accelerometers reported are only suitable for the laboratory environment up to now. In this paper, a miniature optical force dual-axis accelerometer based on the miniature optical system and a particles cavity which is prepared by Micro-Electro-Mechanical Systems (MEMS) technology is proposed. The overall system of the miniature optical levitation including the miniature optical system and MEMS particles cavity is a cylindrical structure with a diameter of about 10 mm and a height of 33 mm (Φ 10 mm × 33 mm). Moreover, the size of this accelerometer is 200 mm × 100 mm × 100 mm. Due to the selected light source being a laser diode light source with elliptical distribution, it is sensitive to the external acceleration in both the long axis and the short axis. This accelerometer achieves a measurement range of ±0.17 g–±0.26 g and measurement resolution of 0.49 mg and 1.88 mg. The result shows that the short-term zero-bias stability of the two orthogonal axes of the optical force accelerometer is 4.4 mg and 9.2 mg, respectively. The main conclusion that can be drawn is that this optical force accelerometer could provide an effective solution for measuring acceleration with an optical force effect for compact engineering devices.

COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 51-77
Author(s):  
HIROO KINOSHITA

EUV lithography is the exposure technology in which even 15 nm node which is the limit of Si device can be achieved. Unlike the conventional optical lithography, this technology serves as a reflection type optical system, and a multilayer coated mirror is used. Development of manufacturing equipment is accelerated to aim at the utilization starting from 2011. The critical issues of development are the EUV light source which has the power over 115 W and resist with high sensitivity and low line edge roughness (LER).


2010 ◽  
Vol 97-101 ◽  
pp. 4309-4312
Author(s):  
Hui Rong Xiao ◽  
Wei Wei Zhang

This paper presents a new intelligent moisture controlling system based on the resistance sensor for molding sand. A kind of moisture sensor with high sensitivity, simple structure and being suitable for on-line detecting is designed. A moisture measuring circuit founded on integrated method of frequency and period measuring is proposed. The circuit translates the relation between the sensor’s resistance variation and moisture into that of frequency and moisture, which makes the system to be capable of wide measurement range and high measurement accuracy. What’s more, the system has the features of strong ability of anti-interference and adaptation to remote measuring. Testing result shows that the moisture measuring and controlling accuracy of the proposed system can achieved ±0.2%.


2018 ◽  
Vol 225 ◽  
pp. 01014
Author(s):  
Muthuraja Soundrapandian ◽  
Subramaniam Chittur Krishnaswamy

The sensors can be developed based on ampherometric principle using Direct Methanol Fuel Cell (DMFC) technology. The synthesis of cost effective electrocatalyst materials for improved oxygen reduction reaction (ORR) and preparing electrodes by using suitable methods to reduce the cost of the sensing electrode is the major objective of the present work. Pt-Sn alloy exhibits high sensitivity in ORR among other Pt alloys and hence will be used as the ORR catalysts. For various concentration of methanol at different temperature, the current density of the chemically synthesised and characterized Pt-Sn/C was analysed. The accuracy will be determined by the detection of electric current or changes in electric current to design the sensor. To analyse the sensor accuracy, we have used passive mode design protocol in COMSOL Multiphysics. From the constructed cell of 1.0 cm cell area, we can optimize the overall power density and hence the sensitivity of the sensor by the modification of the cell parameters and interfacing it with Darcy’s law of fluidic flow through porous electrode medium. The micro electro mechanical systems (MEMS) technology was used for the design and fabrication of sensor with the electrochemical inputs from a standard DMFC single cell arrangement. The cell structure has been fabricated using a 3D printing technology and the output of the cell was optimized for ampherometric detection. The sensor with microfludic interconnects were fabricated by MEMS technology. The sensor response characteristics were studied and will be presented.


Author(s):  
Zhe Niu ◽  
Yulong Zhao ◽  
Bian Tian

This paper describes the design and fabrication of a piezoresistive high-pressure rectangular sensor which will be used in the petrochemical industry field. The stress distribution of the piezoresistance on the membrane was analyzed by the Finite Element Method through the ANSYS software. The piezoresistance was fabricated on SOI wafers by the MEMS bulk-micromachining technology and the silicon substrate was bonded with the Pyrex 7740# glass by the anodic bonding technology. The linearity, sensitivity, repeatability and accuracy of the fabricated result were 0.3%, 1.109mV/MPa, 0.41% and 0.57%, respectively. This type of microstructure sensor has advantages of high sensitivity, linearity and accuracy. Meanwhile, the sensor has a wide measurement range because of the rectangular membrane. The piezorsistive high pressure rectangular diaphragm sensor offers several advantages such as, high sensitivity, linearity and accuracy, and additionally, the wide measurement range of the sensor will guarantee its great applications in the petrochemical industry fields.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Yong Hua ◽  
Shuangyuan Wang ◽  
Bingchu Li ◽  
Guozhen Bai ◽  
Pengju Zhang

Micromirrors based on micro-electro-mechanical systems (MEMS) technology are widely employed in different areas, such as optical switching and medical scan imaging. As the key component of MEMS LiDAR, electromagnetic MEMS torsional micromirrors have the advantages of small size, a simple structure, and low energy consumption. However, MEMS micromirrors face severe disturbances due to vehicular vibrations in realistic use situations. The paper deals with the precise motion control of MEMS micromirrors, considering external vibration. A dynamic model of MEMS micromirrors, considering the coupling between vibration and torsion, is proposed. The coefficients in the dynamic model were identified using the experimental method. A feedforward sliding mode control method (FSMC) is proposed in this paper. By establishing the dynamic coupling model of electromagnetic MEMS torsional micromirrors, the proposed FSMC is evaluated considering external vibrations, and compared with conventional proportion-integral-derivative (PID) controls in terms of robustness and accuracy. The simulation experiment results indicate that the FSMC controller has certain advantages over a PID controller. This paper revealed the coupling dynamic of MEMS micromirrors, which could be used for a dynamic analysis and a control algorithm design for MEMS micromirrors.


2009 ◽  
Vol 16 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Md. Monirul Haque ◽  
Hironari Yamada ◽  
Ahsa Moon ◽  
Mami Yamada

The performance of the far-infrared (FIR) beamline of the 6 MeV tabletop synchrotron light source MIRRORCLE-6FIR dedicated to far-infrared spectroscopy is presented. MIRRORCLE-6FIR is equipped with a perfectly circular optical system (PhSR) placed around the 1 m-long circumference electron orbit. To illustrate the facility of this light source, the FIR output as well as its spectra were measured. The optimum optical system was designed by using the ray-tracing simulation code ZEMAX. The measured FIR intensity with the PhSR in place is about five times higher than that without the PhSR, which is in good agreement with the simulation results. The MIRRORCLE-6FIR spectral flux is compared with a standard thermal source and is found to be 1000 times greater than that from a typical thermal source at ∼15 cm−1. It is also observed that the MIRRORCLE-6FIR radiation has a highly coherent nature. The broadband infrared allows the facility to reach the spectral range from 10 cm−1 to 100 cm−1. MIRRORCLE-6FIR, owing to a large beam current, the PhSR mirror system, a large dynamic aperture and small ring energy, can deliver a bright flux of photons in the FIR/THz region useful for broadband spectroscopy.


1979 ◽  
Vol 88 (6) ◽  
pp. 771-773 ◽  
Author(s):  
Benjamin Chen ◽  
Terry L. Fry ◽  
Newton D. Fischer

A new hand-held otoscope photographic system, convenient and suitable for clinical application, is introduced. This instrument allows clear otoscopic examination in stenotic or tortuous ear canals, and photographs the subject in one procedure. The instrument consists of a rodlens optical system, a fiberoptic light source, a camera, and exchangeable speculum and a strobe light. Color photographs of tympanic membranes and middle ear pathology are presented.


2010 ◽  
Author(s):  
Ryoichi Hirano ◽  
Nobutaka Kikuiri ◽  
Masatoshi Hirono ◽  
Riki Ogawa ◽  
Hiroyuki Sigemura ◽  
...  

Author(s):  
Feng Pan ◽  
Abdoul Kader Maiga ◽  
Po-Hao Adam Huang

The concept of using Micro-Electro-Mechanical Systems (MEMS) for in-situ corrosion sensing and for long-term applications has been proposed and is currently under development by our research lab. This is a new type of sensing using MEMS technology and, to the knowledge of our team, has not been explored previously. The MEMS corrosion sensor is based on the oxidation of metal nano/micro-particle embedded in elastomeric polymer to form a composite sensing element. The polymer controls the diffusion into and out of the sensor while the corrosion of the metal particles inhibits electrical conduction which is used as the detection signal. The work presented here is based on part of the methods developed for the removal of native and process-induced metal oxides. A major aspect is the study of the swelling dynamics of the polymer matrix (polydimethylsiloxane, PDMS) intended for enhancing material transport of etchants into and reaction products out of the composite during oxide removal. More specifically, the characterization of the swelling of copper particles-PDMS composite samples in liquid solvent baths is presented.


2014 ◽  
Vol 68 (5) ◽  
pp. 629-641 ◽  
Author(s):  
Tatjana Djakov ◽  
Ivanka Popovic ◽  
Ljubinka Rajakovic

Micro-electro-mechanical systems (MEMS) are miniturized devices that can sense the environment, process and analyze information, and respond with a variety of mechanical and electrical actuators. MEMS consists of mechanical elements, sensors, actuators, electrical and electronics devices on a common silicon substrate. Micro-electro-mechanical systems are becoming a vital technology for modern society. Some of the advantages of MEMS devices are: very small size, very low power consumption, low cost, easy to integrate into systems or modify, small thermal constant, high resistance to vibration, shock and radiation, batch fabricated in large arrays, improved thermal expansion tolerance. MEMS technology is increasingly penetrating into our lives and improving quality of life, similar to what we experienced in the microelectronics revolution. Commercial opportunities for MEMS are rapidly growing in broad application areas, including biomedical, telecommunication, security, entertainment, aerospace, and more in both the consumer and industrial sectors on a global scale. As a breakthrough technology, MEMS is building synergy between previously unrelated fields such as biology and microelectronics. Many new MEMS and nanotechnology applications will emerge, expanding beyond that which is currently identified or known. MEMS are definitely technology for 21st century.


Sign in / Sign up

Export Citation Format

Share Document