Pressureless Sintering of Ultra-High Temperature ZrB2-SiC Ceramics

2008 ◽  
Vol 368-372 ◽  
pp. 1746-1749 ◽  
Author(s):  
Zhi Qiang Cheng ◽  
Chang Ling Zhou ◽  
Ting Yan Tian ◽  
Cheng Gong Sun ◽  
Zhi Hong Shi ◽  
...  

ZrB2-SiC ultra-high temperature ceramics (UHTCs) were pressureless sintered with Y2O3-Al2O3 as the sintering additives. The effects of sintering additive and crystallization annealing on the microstructure and properties of ZrB2-SiC UHTCs were investigated. Sintering was activated by producing liquid phase of Y2O3 and Al2O3. The relative density of sintered ZrB2-20wt%SiC ceramic could reach 96% when the content of sintering additive was 6% and the sintering temperature was 1750°C and its bending strength, Vickers hardness, and fracture toughness were 412 MPa, 13 GPa, and 6.0 MPa•m1/2, respectively. The crystallization annealing can result in YAG phase from grain boundary and enhance the high temperature properties of the UHTCs. The UHTCs have excellent ablation resistance at ultra-high temperatures, and a very low ablation rate of 0.0006 mm/s after ablation for 900s at 2800°C.

2021 ◽  
Vol 11 (1) ◽  
pp. 1-56
Author(s):  
Dewei Ni ◽  
Yuan Cheng ◽  
Jiaping Zhang ◽  
Ji-Xuan Liu ◽  
Ji Zou ◽  
...  

AbstractUltra-high temperature ceramics (UHTCs) are generally referred to the carbides, nitrides, and borides of the transition metals, with the Group IVB compounds (Zr & Hf) and TaC as the main focus. The UHTCs are endowed with ultra-high melting points, excellent mechanical properties, and ablation resistance at elevated temperatures. These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles, particularly nozzles, leading edges, and engine components, etc. In addition to bulk UHTCs, UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics. Recently, highentropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials. This review presents the state of the art of processing approaches, microstructure design and properties of UHTCs from bulk materials to composites and coatings, as well as the future directions.


2010 ◽  
Vol 105-106 ◽  
pp. 199-202 ◽  
Author(s):  
Chang Ling Zhou ◽  
Yan Yan Wang ◽  
Zhi Qiang Cheng ◽  
Chong Hai Wang ◽  
Jie Fan ◽  
...  

ZrB2-SiC and ZrB2-SiC-C ultra-high temperature ceramics (UHTCs) were fabricated by pressureless sintering under an argon atmosphere. The mass and linear ablation rates were tested in an oxyacetylene flame with high velocity. The microstructure and phase transformation of the ZrB2-based UHTCs were characterized by scanning electron microscopy along with energy dispersive spectrometry. Results show that the UHTCs have excellent properties of ablation resistance at ultra-high temperature. The values of mass and linear ablation rates were lower in the ZrB2-SiC UHTCs than those measured for ZrB2-SiC-C. The effect of C addition on the ablation resistant was not obvious but it influenced the microstructure of the ZrB2-SiC UHTCs. And the ablation resistant mechanisms of ZrB2-based UHTCs were discussed according to microstructure analysis.


Author(s):  
Lun Feng ◽  
William G. Fahrenholtz ◽  
Donald W. Brenner

Herein, we critically evaluate computational and experimental studies in the emerging field of high-entropy ultra-high-temperature ceramics. High-entropy ultra-high-temperature ceramics are candidates for use in extreme environments that include temperatures over 2,000°C, heat fluxes of hundreds of watts per square centimeter, or irradiation from neutrons with energies of several megaelectron volts. Computational studies have been used to predict the ability to synthesize stable high-entropy materials as well as the resulting properties but face challenges such asthe number and complexity of unique bonding environments that are possible for these compositionally complex compounds. Experimental studies have synthesized and densified a large number of different high-entropy borides and carbides, but no systematic studies of composition-structure-property relationships have been completed. Overall, this emerging field presents a number of exciting research challenges and numerous opportunities for future studies. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document