Influence of Oxygen Plasma Treatment on Surface Properties of Armos Fiber

2008 ◽  
Vol 373-374 ◽  
pp. 430-433 ◽  
Author(s):  
Ping Chen ◽  
Jing Wang ◽  
Cheng Shuang Zhang ◽  
Chun Lu ◽  
Zhen Feng Ding ◽  
...  

Armos fiber (F-12 aramid fiber in paper) was provided with broad application foreground as reinforcement material for advanced composites in aviation and spaceflight field, due to its outstanding properties, such as high modulus, high strength, high temperature resistance, erosion resistance and so on. However, the exertion of property was still limited by slippery surface, low surface energy and weak interfacial adhesion performance. In this study, the effects of oxygen plasma treatment time on polar functional groups introduced onto the fiber surface, surface free energy and surface topographic images were discussed by X-ray photoelectron spectroscopy (XPS) analysis, dynamic contact angle analysis system (DCA) and atomic force microscopy (AFM), respectively. It was found that the content of oxygen element and polar functional groups on fiber surface were all increased obviously after oxygen plasma treatment. The content of oxygen element on surface for untreated F-12 aramid fiber was 11.13%, while it increased to 15.20% after oxygen plasma treatment for 10 min; The content of polar functional groups on surface for untreated F-12 aramid fiber was 28.14%, while it increased to 38.11% after oxygen plasma treatment for 10 min. The polar component (γp) of fiber surface energy increased sharply from 6.82 mN/m to 36.68 mN/m after 10 min plasma treatment, the total surface free energy was increased from 46.26 mN/m to 64.66 mN/m.The results indicated that oxygen plasma treatment had introduced a large amount of reactive functional groups onto the fiber surface, and these groups can form together as covalent bonding to improve the surface wettability and increase the surface energy of fibers. At the same time, oxygen plasma treatment was able to generate a mass of bulges and grooves on F-12 aramid fiber surface, which had an active effect on increasing the chemical bond and mechanical function between fiber and resin and enhancing the interfacial adhesion performance of composite. The fiber surface grooves had been increased with the time prolonging before 10 min while decreased after 10 min, the results maybe relate to partial organic on fiber surface melting. It had an adverse effect on the interfacial adhesion properties of composite. Therefore, the optimum plasma treatment time was between 5 min and 10 min.

1998 ◽  
Vol 18 (1-2) ◽  
pp. 49-62 ◽  
Author(s):  
Seung-Goo Lee ◽  
Tae-Jin Kang ◽  
Tae-Ho Yoon

Abstract The surface area change of UHMWPE fibers which underwent oxygen plasma treatment was measured as a function of plasma power and plasma treatment time. The interfacial adhesion of oxygen plasma treated UHMWPE fibers was evaluated via micro-droplet test and double cantilever beam test Surface area increased with plasma treatment time at 30 and 60W, but showed a maximum at 100 and 150W. The interfacial adhesion of UHMWPE fibers to vinylester resin exhibited the same trend as the surface area. SEM analysis revealed that oxygen plasma treatment roughened UHMWPE fibers by forming micro-pores leading to increased surface area. However, 1S0W plasma treatment led to degradation of the fibers and thus resulted in failure within the fiber surface layers, producing ribbon-like strips of fiber.


2018 ◽  
Vol 25 (9) ◽  
pp. 771-783 ◽  
Author(s):  
Jing Wang ◽  
Ping Chen ◽  
Chun Lu ◽  
Qi Yu ◽  
Wei Li ◽  
...  

2018 ◽  
Vol 25 (5) ◽  
pp. 993-1001 ◽  
Author(s):  
Maryam Gholami ◽  
Mohammad Saleh Ahmadi ◽  
Mohammad Ali Tavanaie ◽  
Mohammad Khajeh Mehrizi

AbstractIn recent years, natural fibers have received much attention from various industrial applications. As these fibers are lightweight, nonabrasive, low cost, ecofriendly and biodegradable, they can be sometimes considered as alternatives to synthetic fibers in lightweight composite structures. In this work, date palm fibers (DPFs) were treated by oxygen plasma at various plasma discharge power and exposure time. The effects of plasma treatment on tensile strength of DPF and interfacial adhesion between DPF and epoxy were determined by single fiber tensile test and microbond test, respectively. Scanning electron microscopy was used to investigate the surface morphologies of DPFs before and after the plasma treatment. The functional groups on the surface were studied by attenuated total reflectance-Fourier transform infrared spectroscope (ATR-FTIR). Decrease in hemicellulose and lignin content of DPF was indicated in ATR-FTIR spectra of the treated sample with plasma treatment. The results show that plasma treatment cleans the fiber surface and increases the surface roughness by etching effect. Moreover, fiber surface modification significantly improves tensile properties of DPFs and interfacial shear stress (IFSS) of fiber/matrix. However, the effects of plasma power and exposure time on tensile properties and IFSS values of DPFs are not found significant. Moreover, Weibull statistics show that plasma treatment could not decrease the variability in fiber strength due to the nature of fibers.


2011 ◽  
Vol 1336 ◽  
Author(s):  
Amirhasan Nourbakhsh ◽  
Mirco Cantoro ◽  
Tom Vosch ◽  
Geoffrey Pourtois ◽  
Johan Hofkens ◽  
...  

ABSTRACTWe investigate the structural, optical and electrical properties of single-layer graphene exposed to oxygen plasma treatment. We find that the pristine semimetallic behavior of graphene disappears upon plasma treatment, in favour of the opening of a bandgap and the featuring of semiconducting properties. The metal-to-semiconductor transition observed appears to be dependent on the plasma treatment time. The semiconducting behavior is also confirmed by photoluminescence measurements. The opening of a bandgap in graphene is explained in terms of graphene surface functionalization with oxygen atoms, bonded as epoxy groups. Ab initio calculations of the density of states show more details about the oxygen–graphene interaction and its effects on the graphene optoelectronic properties, predicting no states near the Fermi level at increasing epoxy group density. The structural changes are also monitored by Raman spectroscopy, showing the progressive evolution of the sp2 character of pristine graphene to sp3, due to the lattice decoration with out-of-plane epoxy groups.


2016 ◽  
Vol 23 (01) ◽  
pp. 1550089 ◽  
Author(s):  
K. VIGNESH ◽  
K. A. VIJAYALAKSHMI ◽  
N. KARTHIKEYAN

Bamboo charcoal (BC) accompanied silver (Ag) nanocomposite is synthesized through sol–gel method. The produced BC/Ag nanocomposite was surface modified by air and oxygen plasma treatments. Silver ions (Ag[Formula: see text]) will serve to improve the antibacterial activity as well as the surface area of BC. Plasma treatment has improved the surface functional groups, crystalline intensity and antibacterial activity of the prepared nanocomposite. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show that Ag nanoparticles have good agreement with BC and the particle size has a mean diameter of 20–40[Formula: see text]nm. We observe the carboxyl functional groups in Fourier transform infrared spectroscopy (FTIR) after the oxygen plasma treatment. Moreover surface area and adsorption were analyzed by using the Brunauer, Emmett and Teller (BET) surface area ([Formula: see text]) and UV–Vis spectroscopy.


Author(s):  
Eda D. Yildirim ◽  
Selc¸uk Gu¨c¸eri ◽  
Wei Sun

In the present study, the effect of oxygen-based plasma treatment on the three dimensional poly (ε-caprolactone) (PCL) was analyzed in terms of surface wettability, surface energy, and surface biocompatibility. The surface treatment was carried out for 1, 3, and 5 minutes durations on three dimensional PCL scaffolds at atmospheric pressure using a radio frequency (RF) plasma treatment system. The solid surface energies of the modified and unmodified PCL scaffolds were calculated by using the Owens-Wendt’s method. To examine the effect of oxygen plasma treatment on cell-scaffold interaction, mouse osteoblast cell line (7F2) was used. Oxygen plasma treatment contributed in decreasing the hydrophobicity of PCL for the 1-min treatment. A change in the surface energy from 39.98 mN/m for untreated to 52.54 mN/m for 1-min treated was observed by the increment in the polar component of surface energy. However, with the extended treatment times (3-min, and 5 min), the hydrophilicity, and the surface energy remained unaffected. The highest mouse osteoblast cells proliferation rate was observed for the 1-minute treated sample.


1995 ◽  
Vol 397 ◽  
Author(s):  
Jae-Ik Woo ◽  
Sang-Gul Lee ◽  
Dae-Gyu Moon ◽  
Chan-Hee Hong ◽  
Hoe-Sup Soh

ABSTRACTOxygen plasma treatment was performed on the excimer laser annealed poly-Si surface, followed by gate oxide deposition with low pressure chemical vapor deposition (LPCVD) in order to control the threshold voltage of excimer laser annealed poly-Si thin film transistors (TFTs).Threshold voltages of n-channel TFTs increase from 0.4 to 2.8 V by varying the treatment time from 0 to 7 min. It is shown the effective charge density increased toward negative direction with increase of the treatment time.In addition to the increase of threshold voltage, the oxygen plasma treatment on the Si surface led to an increase in the deposition rate of LPCVD oxide films with an apparent reduction of carbon around the interface between gate insulator and poly-Si film after oxygen plasma treatment.


2005 ◽  
Vol 75 (5) ◽  
pp. 437-441 ◽  
Author(s):  
Jo Verschuren ◽  
Peter Van Herzele ◽  
Karen De Clerck ◽  
Paul Kiekens

Sign in / Sign up

Export Citation Format

Share Document