Numerical Simulation of Temperature Stress on Asphalt Pavement of Concrete Bridge Deck in Cold Region

2008 ◽  
Vol 385-387 ◽  
pp. 597-600 ◽  
Author(s):  
Hong Wang ◽  
Shao Peng Wu ◽  
Bo Li ◽  
Cong Hui Liu

Flexible pavement plays an important role in the primary concrete bridges at present. However, climate environment, to which pavement is exposed, significantly impact pavement stability and long-term performance. Especially, low temperature cracking of asphalt pavement in cold region is a common existing problem. In order to improve the pavement’s crack resistance it is necessary to predict the temperature stress distribution within the asphalt layers. A two-dimensional finite element model of a concrete bridge in thermal and thermal-structural couple analysis is developed to predict temperature and temperature stress variation of asphalt layers in cold region. The temperature stress variation is analyzed at seasonal temperature, different cooling rate and the different thickness of asphalt layers. The model considers a set of primary thermal environmental conditions. Ultimately, the model is aimed at providing pavement engineers with an efficient computational tool that attempts to increase the prediction accuracy of temperature in asphaltic pavement of cold region for more reliable pavement design.

2014 ◽  
Vol 587-589 ◽  
pp. 1332-1336
Author(s):  
Jun Qing Chen ◽  
Ai Jun Li ◽  
Mei Qian Jin ◽  
Min Nan Zheng ◽  
Wan Yi Yang

Prone to low temperature cracking of asphalt pavement problems in cold areas, testing BBR on 70# base asphalt and 4 kinds of different dosage of SBS modified asphalt, testing TSRST on their mixture to appraisal the low temperature performance of SBS modified asphalt mixture. Results show that compared with the temperature stress of internal cracks of base asphalt and SBS modified asphalt mixture not rise significantly. But the stress of SBS asphalt mixture growing slow and the temperature of cracking reduce obviously; it means the low temperature performance improved. This shows that SBS improves the toughness and reduced the modulus of asphalt mixture in low temperature, rather than increasing the tensile strength of mixture specimens.


2011 ◽  
Vol 97-98 ◽  
pp. 305-310
Author(s):  
Rui Bo Ren ◽  
Li Tao Geng ◽  
Wen Yang Qi

The dynamic response of saturated asphalt pavement subjected to moving vehicle load is studied. Based on the porous media theory, a three-dimensional finite element model is developed and the temporal and spatial distribution of three directional stresses and strains are calculated in saturated pavement and compared with those in dry condition. The results show obvious difference between saturated and dry asphalt pavement, especially in asphalt layer.


2013 ◽  
Vol 723 ◽  
pp. 729-736
Author(s):  
Hong Zhi Li

In order to study the cracks resisting mechanism of large stone asphalt mixture base, a multi-layer elastic theory program was used to calculate the loading stress in different pavement structures. Then a Finite Element model was established based on a twinkling heat conduct hypothesis to calculate temperature stress and strain of pavement structure when temperature dropped. Finally, the stress and strain of all the structural layers was calculated considering the coupling effect of loading and temperature. It is found that temperature stress which is caused by temperate quick dropped is far more lager than loading stress cause by standard loading, while considering the co-effect of vehicle loading and temperature quickly dropped. Thus it is revealed that cracking in pavement is mainly caused by temperature quickly dropped. By contrast, it is found that pavement stress and strain caused by loading and temperature of the structure with asphalt macadam mixture (ATB30) base are less than that of the conventional semi-rigid pavement. Finally, an asphalt macadam mixture base applied in asphalt pavement structure is believed to be an efficient way in reducing asphalt pavement cracking.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
M. Hafezolghorani Esfahani ◽  
F. Hejazi ◽  
R. Vaghei ◽  
E. Nikbakht ◽  
D. C. J. Tze

The interest of using precast segmental columns in construction of concrete bridges has significantly increased in recent years. One research area of concrete bridges is the application of Precast Prestressed Concrete Segmental (PPCS) Column in any structural analysis software or FE program code. Modeling a PPCS column, which consists of various materials with interaction between them, is complicated and time-consuming. This research attempts to formulate the stiffness matrix of PPCS columns in order to form the constitutive model in linear form to evaluate the response of the columns. A two-dimensional finite element model is presented in the finite element package ANSYS. Parametric studies are conducted by finite element models to verify the constitutive models for the PPCS column with a different number of concrete segments. Comparison between the constitutive model and the FE program results indicates that the constitutive model is accurate enough to predict the deformation of the PPCS columns.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2011 ◽  
Vol 368-373 ◽  
pp. 2711-2715 ◽  
Author(s):  
De Yun Ding ◽  
Xiu Ren Yang ◽  
Wei Dong Lu ◽  
Wei Ning Liu ◽  
Mei Yan ◽  
...  

In more and more complicated urban building environment, a new construction method that metro engineering is constructed by large-diameter shield and shallow mining method can be regarded as a great attempt in China. By taking the Gaojiayuan station of Beijing metro line 14 as an engineering background, the main construction steps for the platform of the metro station built by a large-size shield with an outer diameter of 10 m and the Pile-Beam-Arch (PBA) method are introduced. Based on the soil-structure interaction theory, a two-dimensional finite element model is used to simulate the shield tunneling and the platform construction by the PBA method to enlarge the shield tunnel. The ground deformation and structural stress of the platform are predicted. The numerical results can be regarded as a valuable reference for the application of the new construction method in Beijing metro line 14.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


Sign in / Sign up

Export Citation Format

Share Document