Numerical Analysis of Metro Station Construction by Large-Diameter Shield and Pile-Beam-Arch Method

2011 ◽  
Vol 368-373 ◽  
pp. 2711-2715 ◽  
Author(s):  
De Yun Ding ◽  
Xiu Ren Yang ◽  
Wei Dong Lu ◽  
Wei Ning Liu ◽  
Mei Yan ◽  
...  

In more and more complicated urban building environment, a new construction method that metro engineering is constructed by large-diameter shield and shallow mining method can be regarded as a great attempt in China. By taking the Gaojiayuan station of Beijing metro line 14 as an engineering background, the main construction steps for the platform of the metro station built by a large-size shield with an outer diameter of 10 m and the Pile-Beam-Arch (PBA) method are introduced. Based on the soil-structure interaction theory, a two-dimensional finite element model is used to simulate the shield tunneling and the platform construction by the PBA method to enlarge the shield tunnel. The ground deformation and structural stress of the platform are predicted. The numerical results can be regarded as a valuable reference for the application of the new construction method in Beijing metro line 14.

2011 ◽  
Vol 368-373 ◽  
pp. 2731-2735 ◽  
Author(s):  
Mei Yan ◽  
Xiu Ren Yang ◽  
Ai Min Li ◽  
Wen Jun Wang ◽  
De Yun Ding

With the speedy development of Beijing mass transit, the land for metro engineering construction is becoming more and more insufficient; moreover, more and more complicated building environment problems are coming forth in future. In a complex building environment, how to choose available construction method to fast, safely and economically build metro engineering is worthy to be urgently studied in Beijing mass transit. Taking the experiment project of Beijing metro line No.14 as an engineering background, a new construction method that a running tunnel is firstly built by large-size shield method and then a metro station is constructed by shallow mining method to enlarge existing large-diameter shield tunnel is presented in this paper. Based on the building conditions of the experiment project, three architectural design schemes for the metro station and two kinds of construction plans are briefly introduced, and their advantages and disadvantages are analyzed as well. The new construction method can be used as a reference for the design and construction of metro engineering in China in the future.


2011 ◽  
Vol 261-263 ◽  
pp. 1196-1200 ◽  
Author(s):  
De Yun Ding ◽  
Xiu Ren Yang ◽  
Wei Dong Lu ◽  
Wei Ning Liu ◽  
Mei Yan

Constructing a metro station by enlarging an existing large-diameter shield tunnel can be considered as an attempt to build metro engineering efficiently, safely and economically. To Take the Gaojiayuan station of Beijing metro line 14 as an object of study, two-dimensional finite element models are used to simulate metro station construction by enlarging a large-diameter shield tunnel with an outer diameter of 10 m, based on the soil-tunnel-pipeline-building interaction. According to the theory of orthogonal experimental design, four different supplementary construction measures are considered to study the influence of whether or not adopting the measures on deformation of adjacent structures during enlarging construction. The deformation of adjacent structures is predicted on the basis of adopting four supplementary construction measures. The numerical results can be regarded as a reference for the design and construction of metro station by enlarging large-diameter shield tunnel.


2012 ◽  
Vol 170-173 ◽  
pp. 1673-1678
Author(s):  
Mei Yan ◽  
De Yun Ding ◽  
Xiu Ren Yang ◽  
Xiu Ren Yang ◽  
Wei Dong Lu ◽  
...  

There is no engineering experience for metro station construction by the PBA (Pile-Beam-Arch) method to enlarge an existing large-size shield tunnel in China. During enlarging construction by the PBA method, the spatial mechanical and deformational characteristics of metro station structure are still not clear. In this paper, the Gaojiayuan station is taken as an engineering background to study the spatial mechanical and deformational characteristics during enlarging construction by the PBA method. Based on soil-structure interaction theory, a three-dimensional finite element model is built to simulate the enlarging construction by the PBA method. The three-dimensional numerical results can be regarded as a valuable reference for enlarging construction by the PBA method in Beijing metro line 14.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Kan Huang ◽  
Yiwei Sun ◽  
Jun He ◽  
Xianqiang Huang ◽  
Meng Jiang ◽  
...  

Shield tunnels will inevitably pass through viaduct piles at a close distance due to the extensive construction of subways and viaducts in the city. In order to understand the influence of shield tunneling on the deformation of existing pile foundation and grouting protection measures, based on an engineering case, Changsha Metro Line 5 (from South Gaoqiao station to Guitang station), a three-dimensional finite element model was established to analyze the deformation of bridge pile using grouting protection wall with different depths and shapes when the shield tunnel is under construction. The analytical results indicate that the grouting protection wall can effectively reduce the pile displacement; especially the grouting depth is 3 m below the bottom of the tunnel. Moreover, the L-shaped grouting protection wall can effectively reduce the longitudinal displacement of the piles. The present findings may provide a reference for the design and construction of shield tunnels passing through viaduct piles.


2011 ◽  
Vol 90-93 ◽  
pp. 2143-2146
Author(s):  
Zhan Rui Wu ◽  
Tai Yue Qi ◽  
Lin Zhong

The construction schemes of metro station driven with enlarging shield tunnels based on the shield tunnel in the upper and lower step method of artificial were first used in the dongshankou station of Guangzhou Metro Line VI and applied successfully in practice. This paper analyses and studies comprehensively the affection to the ground on the metro station driven with enlarging shield tunnels through numerical simulation. The study in this paper is mainly considered the ground settlement and movement when enlarging shield tunneling in the left tunnel. The ground settlement and movement up to a certain extent will affect the safety of the above adjacent buildings. This paper will provide some guidance to the application of this construction method in the future.


2014 ◽  
Vol 580-583 ◽  
pp. 1013-1018 ◽  
Author(s):  
Hui Feng Su ◽  
Wei Ning Liu ◽  
Fu Chun Liu

Confronting with the difficulties of the construction metro station in the Northeast of China, a new idea of shield method combined prefabricated method is put forward. In the paper the research status of the underground engineering precast assembly technology was analyzed and classified firstly. The method of single round interval shield combined with open-cut (or covered excavation) prefabricated sections and on the basis of shield tunnel to build single arch station is especially worth studying and promotion. Then the key prefabricate theory needing to deal with such as how to calculating the spring stiffness and so forth of the calculating model. The key technology such as joint formation, waterproof and the other of shield method combined with prefabricated method was discussed.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 76
Author(s):  
Ashraf Hefny ◽  
Mohamed Ezzat Al-Atroush ◽  
Mai Abualkhair ◽  
Mariam Juma Alnuaimi

The complexities and the economic computational infeasibility associated in some cases, with three-dimensional finite element models, has imposed a motive for many investigators to accept numerical modeling simplification solutions such as assuming two-dimensional (2D) plane strain conditions in simulation of several supported-deep excavation problems, especially for cases with a relatively high aspect ratio in plan dimensions. In this research, a two-dimensional finite element model was established to simulate the behavior of the supporting system of a large-scale deep excavation utilized in the construction of an underground metro station Rod El Farrag project (Egypt). The essential geotechnical engineering properties of soil layers were calculated using results of in-situ and laboratory tests and empirical correlations with SPT-N values. On the other hand, a three-dimensional finite element model was established with the same parameters adopted in the two-dimensional model. Sufficient sensitivity numerical analyses were performed to make the three-dimensional finite element model economically feasible. Results of the two-dimensional model were compared with those obtained from the field measurements and the three-dimensional numerical model. The comparison results showed that 3D high stiffening at the primary walls’ corners and also at the locations of cross walls has a significant effect on both the lateral wall deformations and the neighboring soil vertical settlement.


2015 ◽  
Vol 724 ◽  
pp. 17-21
Author(s):  
Run Lai Zhang ◽  
Li Ming Tang ◽  
Kun Tang

Segment floating is a common problem met in the construction of large-diameter crossing-river shield tunnel. The factors affecting segment floating are discussed first and analyzed by numerical simulation, including the properties of grouting material, the speed of shield tunneling, grouting pressure difference, the tunnel longitudinal stiffness, frictional force between segment rings and weight of the supporting system. The simulation results indicate that segment floating will reduce by shortening slurry’s initial solidification time, slowing shielding speed, improving the tunnel longitudinal stiffness as well as increasing the frictional force between segment rings. And some measures are given such as applying new rapid-setting slurries, shear pins, rubber mats with high friction coefficient and pre-stressed bolts


Author(s):  
Juliana E. Roza ◽  
Giuliano Malatesta ◽  
Marcelo C. Fritz ◽  
Gianluca Mannucci ◽  
Luis Chad ◽  
...  

Large diameter longitudinally welded linepipes have to fulfil increasing technical requirements in order to guarantee best performance during construction and service. The increase in natural gas demand in European, North American, South American and Asian countries, foreseen for the immediate future, necessitates the development of cost effective transportation solutions to economically exploit gas fields located in remote area. A competitive option of gas to market is represented by the use of high-pressure natural gas transmission pipelines. In particular, for natural gas transportation over long distances, the use of high grade steel (X80, X100 or even higher) large diameter (36″ to 56″ of outer diameter), gas pipelines is found to be very attractive and economical. With respect to SAW pipes attention is focused on seam weld consumables and forming tools. In particular, forming tools must be designed in order to manage the large spring back effect that high grade plates, such as those for X100 pipes, exhibits when the pipes go from the U-press to the O-press. The objective of this paper is to present the evaluation of X100 pipes inside the UOE process from TenarisConfab mill with a mathematic modeling to get the best parameters. The X100 production process has been analyzed via Finite Element Model to evaluate goodness of tools geometry and pipe mill capability to produce higher grades pipes.


2015 ◽  
Vol 49 ◽  
pp. 130-143 ◽  
Author(s):  
Jun Liu ◽  
Fang Wang ◽  
Shaohui He ◽  
Enzhi Wang ◽  
Hong Zhou

Sign in / Sign up

Export Citation Format

Share Document