Workability and Strength Characteristics of High Performance Concrete with Steel Slag Admixture

2008 ◽  
Vol 400-402 ◽  
pp. 415-419 ◽  
Author(s):  
Yun Feng Li ◽  
Ling Wang ◽  
Yan Yao ◽  
Hui Lin

Workability, mechanical properties and durability of concrete can be greatly improved with the advanced mineral admixtures such as steel slag powder. The workability and mechanical properties of steel slag concrete with different types of steel slag and different dosage of admixtures are studied. The experimental results showed the effect of steel slag powder on concrete performance. When compound mineral admixtures with steel slag powder and blast-furnace slag powder are mixed into concrete, the performance of concrete can be improved further due to the synergistic effect and mutual activation.

2013 ◽  
Vol 325-326 ◽  
pp. 67-70
Author(s):  
Yun Feng Li ◽  
Mi Xue Han ◽  
Li Xu

The mineral admixtures mixed into concrete have important effects on concrete performance. The workability and mechanical properties of the concrete are studied with different dosages of admixtures, such as steel slag powder, blast furnace slag powder and fly ash. The results show that fly ash has more advantages in improving the performance of the concrete. When steel slag powder, blast furnace slag powder and fly ash, respectively, replace the amount of cement to 30%, 30%, 20%, the mechanical properties of the concrete are improved significantly.


2009 ◽  
Vol 79-82 ◽  
pp. 175-178 ◽  
Author(s):  
Yun Feng Li ◽  
Yang Liu ◽  
Rong Qiang Du ◽  
Fan Ying Kong

dvanced mineral admixtures can lead to economical high performance concrete with enhanced durability and reduced cement content. When super fine steel slag powder is mixed into concrete as active admixture, resistance to abrasion and resistance to chloride penetration are improved as well as workability and mechanical properties of the concrete. Resistance to abrasion of steel slag concrete is measured and resistance to chloride penetration is also determined by the method of NEL and ASTM C1202 in this paper. Result shows that compound mineral admixtures as partial replacement for Portland cement in mortar enhance abrasion resistance. Mixing mineral admixture is an effective means for controlling the chloride permeability. Concrete specimens prepared with compound mineral admixture with steel slag powder and blast furnace slag powder has very low permeability.


2009 ◽  
Vol 79-82 ◽  
pp. 179-182 ◽  
Author(s):  
Yun Feng Li ◽  
Shu Ai Liu ◽  
Rong Qiang Du ◽  
Fan Ying Kong

Concrete properties can be greatly improved with the advanced mineral admixtures such as steel slag powder. Used in combination with Super-plasticizer admixture, steel slag powder can lead to economical high performance concrete with enhanced durability and reduced cement content. The effectiveness of steel slag powder on suppressing Alkali Aggregate Reaction is analyzed. The effectiveness of steel slag powder on suppressing AAR expansion was assessed using the method of ASTM C441 and accelerated test method. Results show that mineral admixtures with steel slag powder as partial replacement for Portland cement in concrete is an effective means for controlling expansion due to AAR. At most a 50% decrease in expansion rate of mortar bars can be found.


2011 ◽  
Vol 255-260 ◽  
pp. 452-456 ◽  
Author(s):  
Yan Zhou Peng ◽  
Kai Chen ◽  
Shu Guang Hu

The durability, such as chloride ion permeability, freeze-thaw and sulfate attack resistance of ultra-high performance concrete (UHPC) having a large amount, ranged from 42% to 48% by weight of binder, of mineral admixtures including steel slag powder (SS), ultrafine fly ash (UFFA) and silica fume (SF) was studied and the microstructure of selected UHPC compositions was investigated by Mercury porosimetry in this paper. Moreover, the relationship between durability and microstructure of UHPC was analyzed. The mercury porosimetry studies demonstrated the very low porosity and a high proportion of the innocuous pores as well as the very small pore size in UHPCs, whose most probable pore diameter did not exceed 10 nm. This porous structure of UHPCs would definitely enable the material have excellent durability.


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


2011 ◽  
Vol 194-196 ◽  
pp. 956-960 ◽  
Author(s):  
Yan Zhou Peng ◽  
Kai Chen ◽  
Shu Guang Hu

The interfacial properties of reactive powder concretes (RPCs), other known as ultra-high performance concrete (UHPC), containing steel slag powder and ultra fine fly ash are studied in this paper. The microstrctural characterization of interfacial transition zones (ITZs), including the aggregate-cement paste interfacial zone and the steel fiber-paste interfacial zone, is investigated by SEM. The microhardness of the aggregate-paste ITZ and the steel slag-paste ITZ is studied and the bond strength of steel fiber in matrix is tested through fiber pullout tests. The results indicate that the microhardness of the steel slag-paste ITZ is slightly higher than that of the aggregate-paste ITZ, which implies the advantage of the substitution of quartz powder with steel slag powder in preparation of RPCs to some degrees. Moreover, the hardness of these two ITZs is higher than that of the hardened paste. A certain amount of hydration products has been observed exsiting on the surface of steel fiber by SEM and the bond strength of steel fiber-martix is up to 9.3MPa. These interfical properties are definitely critical to obtain high performance of UHPCs containing steel slag powder and fly ash.


2013 ◽  
Vol 325-326 ◽  
pp. 71-74
Author(s):  
Yun Feng Li ◽  
Dong Sheng Zhang ◽  
Li Xu

The shrinkage cracking of concrete plays an important role to the accelerated deterioration and shortening the service life of concrete structures. The mineral admixture will be a perfect component of high performance concrete and its utilization will be a valuable resource for recycling. Early age cracking characteristics of concrete with compound admixtures, such as steel slag, blast furnace slag, fly ash, are studied in this paper using plate test method. The better anti-cracking performance of concrete will be realized when blast furnace slag replacing cement at 30%, steel slag and fly ash as the equal mixture components replacing cement at 30%, three kinds of admixtures replacing cement at 30% under the proper proportion.


2013 ◽  
Vol 671-674 ◽  
pp. 1839-1843
Author(s):  
Yuan Gang Wang ◽  
Chao Wan ◽  
Kai Jian Huang ◽  
Gao Qin Zhang ◽  
Ya Feng Hu

Several compound mineral admixtures, such as steel slag powder, granulated blast furnace slag powder and silica fume, are mixed with proper proportion to improve the workability of High Performance Concrete(HPC). Through the orthogonal experiment, workability of HPC is analyzed on water-binder ratio, sand ratio, the amount of superplasticizer and the amount of compound mineral admixtures. Results show that: workability of HPC was significantly effected by the amount of naphthalene sulphonate water-reducing admixture and water-binder ratio, the amount of compound mineral admixtures and sand ratio are impact factors on the workability in a certain extent.


Sign in / Sign up

Export Citation Format

Share Document