Acoustic Emission in Structural Health Monitoring

2009 ◽  
Vol 413-414 ◽  
pp. 15-28 ◽  
Author(s):  
Karen M. Holford

Structural Health Monitoring (SHM) is of paramount importance in an increasing number of applications, not only to ensure safety and reliability, but also to reduce NDT costs and to ensure timely maintenance of critical components. This paper overviews the modern applications of acoustic emission (AE), which has become established as a very powerful technique for monitoring damage in a variety of structures, and the new approaches that have enabled the successful application of the technique, leading to automated crack detection. Examples are drawn from a variety of industries to provide an insight into the current role of AE in structural health monitoring.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 897
Author(s):  
Sagar Jinachandran ◽  
Ginu Rajan

Fiber Bragg grating (FBG)-based acoustic emission (AE) detection and monitoring is considered as a potential and emerging technology for structural health monitoring (SHM) applications. In this paper, an overview of the FBG-based AE monitoring system is presented, and various technologies and methods used for FBG AE interrogation systems are reviewed and discussed. Various commercial FBG AE sensing systems, SHM applications of FBG AE monitoring, and market potential and recent trends are also discussed.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 545 ◽  
Author(s):  
Xinlin Qing ◽  
Wenzhuo Li ◽  
Yishou Wang ◽  
Hu Sun

Structural health monitoring (SHM) is being widely evaluated by the aerospace industry as a method to improve the safety and reliability of aircraft structures and also reduce operational cost. Built-in sensor networks on an aircraft structure can provide crucial information regarding the condition, damage state and/or service environment of the structure. Among the various types of transducers used for SHM, piezoelectric materials are widely used because they can be employed as either actuators or sensors due to their piezoelectric effect and vice versa. This paper provides a brief overview of piezoelectric transducer-based SHM system technology developed for aircraft applications in the past two decades. The requirements for practical implementation and use of structural health monitoring systems in aircraft application are then introduced. State-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed. Development trend of SHM technology is also discussed.


Author(s):  
Behzad Ahmed Zai ◽  
MA Khan ◽  
Kamran A Khan ◽  
Asif Mansoor ◽  
Aqueel Shah ◽  
...  

This article presents a literature review of published methods for damage identification and prediction in mechanical structures. It discusses ways which can identify and predict structural damage from dynamic response parameters such as natural frequencies, mode shapes, and vibration amplitudes. There are many structural applications in which dynamic loads are coupled with thermal loads. Hence, a review on those methods, which have discussed structural damage under coupled loads, is also presented. Structural health monitoring with other techniques such as elastic wave propagation, wavelet transform, modal parameter, and artificial intelligence are also discussed. The published research is critically analyzed and the role of dynamic response parameters in structural health monitoring is discussed. The conclusion highlights the research gaps and future research direction.


2020 ◽  
Vol 19 (6) ◽  
pp. 2007-2022
Author(s):  
John P McCrory ◽  
Matthew R Pearson ◽  
Rhys Pullin ◽  
Karen M Holford

Structural health monitoring has gained wide appeal for applications with high inspection costs, such as aircraft and wind turbines. As the structures and materials used in these industries evolve, so too must the technologies used to monitor them. Acoustic emission is a passive method of detecting damage which lends itself well to structural health monitoring. One form of acoustic emission monitoring, known as wavestreaming, involves intermittently recording data for set periods of time and using the sequential recordings to detect changes in the state of the structure. However, at present, there is no standard method for selecting appropriate wavestream recording parameters, such as their length or their interval of collection. This article investigates a method of optimising acoustic emission wavestreaming for structural health monitoring purposes by introducing the novel concept of adjoining consecutive discrete acoustic emission hit signals to create synthetic wavestreams. To this end, a pre-notched 492 mm × 67.5 mm × 20 mm, 300M grade steel cantilever specimen was subject to cyclic loading and both acoustic emission hit data and conventional wavestreams were collected as a crack grew in the notched region; crack growth activity was also monitored using digital image correlation for comparison. To demonstrate the proposed optimisation process, four sets of synthetic wavestreams were created from the hit data, 0.25, 0.5, 1.0 and 1.5 s in length, and compared with the 1.5-s-long conventional wavestreams. The activity of the peak frequency and frequency centroid bands of interest within the conventional and synthetic wavestreams were examined to determine whether or not cracking activity could be inferred through them. Across comparisons of all data, it was found that the 0.5-s-long synthetic wavestreams contained enough information to identify the same trends as the conventional wavestreams for this application; thus, the use of synthetic wavestreams as a tool for selecting an appropriate wavestream recording length was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document