On Buckling of Long Interface Cracks

2009 ◽  
Vol 417-418 ◽  
pp. 217-220
Author(s):  
Andrei G. Kotousov ◽  
Steven Harding

The paper deals with the buckling instability of long interface cracks subjected to shear and tensile (compressive) loading parallel to the interface. A simplified mathematical model is developed within the Kirchhoff’s plate bending theory; and a general semi-analytical solution is obtained based on the classical strategy for solving for the Euler buckling load. Asymptotic solutions are derived for extreme cases of the applied shear to tensile (compressive) load ratios. The obtained results correlate well with previous numerical studies and can be used to analyze many traditional problems in composite as well as many others, for example, the problem of triggering snow avalanches.

Author(s):  
Wissal Mesfar ◽  
Kodjo Moglo

Muscles in the cervical spine are responsible for guiding the head and for conserving its posture. The weight of the head (∼40N) exerts a continuous compressive load that should be monitored by the neck muscles. Wearing a helmet in many sports or military and work activities increases the compressive loading on the head as well as the involvement of the muscles to counterbalance the impact of this supplemental weight. The compressive load is estimated to range from 120 to 1200N [1]. This loading influences all the biomechanics of the head and neck complex and its musculature. Experimental and numerical studies were involved to determine the biomechanical response of the head and neck [2]. In this study and based on our finite element model, we aim to estimate the biomechanical impact of a compressive load varying from 0N to 100N on the head and neck complex at four positions, neutral position, 10 and 20 deg of head flexion and 10 deg of head extension. An evaluation of the required muscles net moment to conserve the head at each posture will also be done.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
M. L. Roemhildt ◽  
B. D. Beynnon ◽  
M. Gardner-Morse ◽  
K. Anderson ◽  
G. J. Badger

This study describes the first application of a varus loading device (VLD) to the rat hind limb to study the role of sustained altered compressive loading and its relationship to the initiation of degenerative changes to the tibio-femoral joint. The VLD applies decreased compressive load to the lateral compartment and increased compressive load to the medial compartment of the tibio-femoral joint in a controlled manner. Mature rats were randomized into one of three groups: unoperated control, 0% (sham), or 80% body weight (BW). Devices were attached to an animal’s leg to deliver altered loads of 0% and 80% BW to the experimental knee for 12 weeks. Compartment-specific material properties of the tibial cartilage and subchondral bone were determined using indentation tests. Articular cartilage, calcified cartilage, and subchondral bone thicknesses, articular cartilage cellularity, and degeneration score were determined histologically. Joint tissues were sensitive to 12 weeks of decreased compressive loading in the lateral compartment with articular cartilage thickness decreased in the peripheral region, subchondral bone thickness increased, and cellularity of the midline region decreased in the 80% BW group as compared to the 0% BW group. The medial compartment revealed trends for diminished cellularity and aggregate modulus with increased loading. The rat-VLD model provides a new system to evaluate altered quantified levels of chronic in vivo loading without disruption of the joint capsule while maintaining full use of the knee. These results reveal a greater sensitivity of tissue parameters to decreased loading versus increased loading of 80% BW for 12 weeks in the rat. This model will allow future mechanistic studies that focus on the initiation and progression of degenerative changes with increased exposure in both magnitude and time to altered compressive loads.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 38
Author(s):  
Ramzyzan Ramly ◽  
Wahyu Kuntjoro ◽  
Amir Radzi Abdul Ghani ◽  
Rizal Effendy Mohd Nasir ◽  
Zulkifli Muhammad

Stiffened panels are the structure used in the aircraft wing skin panels. Stiffened panels are often critical in compression load due to its thin structural configuration. This paper analyzes the critical loads of a multi configuration stiffened panels under axial compressive loading. The study comprised three main sections; theoretical analysis, numerical analysis and experimental analysis. The present paper deals only with the theoretical analysis. This first part of analysis is very important since the results will be the main input parameter for the subsequent numerical and experimental analysis. The analysis was done on the buckling properties of the panels. Four panel configurations were investigated. Results showed that even though the stiffened panels have the same cross-sectional area, their critical loads were not identical.   


2000 ◽  
Vol 37 (1) ◽  
pp. 56-74 ◽  
Author(s):  
M Hesham El Naggar ◽  
Jin Qi Wei

Tapered piles have a substantial advantage with regard to their load-carrying capacity in the downward frictional mode. The uplift performance of tapered piles, however, has not been fully understood. This paper describes the results of an experimental investigation into the characteristics of the uplift performance of tapered piles. Three instrumented steel piles with different degrees of taper were installed in cohesionless soil and subjected to compressive and tensile load tests. The soil was contained in a steel soil chamber and pressurized using an air bladder to facilitate modelling the confining pressures pertinent to larger embedment depths. The results of this study indicated that the pile axial uplift capacity increased with an increase in the confining pressure for all piles examined in this study. The ratios of uplift to compressive load for tapered piles were less than those for straight piles of the same length and average embedded diameter. The uplift capacity of tapered piles was found to be comparable to that of straight-sided wall piles at higher confining pressure values, suggesting that the performance of actual tapered piles (with greater length) would be comparable to that of straight-sided wall piles. Also, the results indicated that residual stresses developed during the compressive loading phase and their effect were more significant on the initial uplift capacity of piles, and this effect was more pronounced for tapered piles in medium-dense sand.Key words: tapered piles, uplift, axial response, load transfer, experimental modelling.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1588
Author(s):  
Wenshuai Xu ◽  
Mangong Zhang ◽  
Yu Liu ◽  
Hao Zhang ◽  
Meng Chen ◽  
...  

Elastomer compositions containing various particulate fillers can be formulated according to the specific functions required of them. Stress softening—which is also known as the Mullins effect—occurs during high loading and unloading paths in certain supramolecular elastomer materials. Previous experiments have revealed that the load–displacement response differs according to the filler used, demonstrating an unusual model of correspondence between the constitutive materials. Using a spherical indentation method and numerical simulation, we investigated the Mullins effect on polyurethane (PU) compositions subjected to cyclic uniaxial compressive load. The PU compositions comprised rigid particulate fillers (i.e., nano-silica and carbon black). The neo-Hooke model and the Ogden–Roxburgh Mullins model were used to describe the nonlinear deformation behavior of the soft materials. Based on finite element methods and parameter optimization, the load–displacement curves of various filled PUs were analyzed and fitted, enabling constitutive parameter prediction and inverse modeling. Hence, correspondence relationships between material components and constitutive parameters were established. Such relationships are instructive for the preparation of materials with specific properties. The method described herein is a more quantitative approach to the formulation of elastomer compositions comprising particulate fillers.


2020 ◽  
Vol 157 ◽  
pp. 107059
Author(s):  
Septia Hardy Sujiatanti ◽  
Satoyuki Tanaka ◽  
Shuhei Shinkawa ◽  
Yu Setoyama ◽  
Daisuke Yanagihara

2004 ◽  
Vol 72 (6) ◽  
pp. 818-825 ◽  
Author(s):  
G. A. Kardomateas

There exist many formulas for the critical compression of sandwich plates, each based on a specific set of assumptions and a specific plate or beam model. It is not easy to determine the accuracy and range of validity of these rather simple formulas unless an elasticity solution exists. In this paper, we present an elasticity solution to the problem of buckling of sandwich beams or wide sandwich panels subjected to axially compressive loading (along the short side). The emphasis on this study is on the wrinkling (multi-wave) mode. The sandwich section is symmetric and all constituent phases, i.e., the facings and the core, are assumed to be orthotropic. First, the pre-buckling elasticity solution for the compressed sandwich structure is derived. Subsequently, the buckling problem is formulated as an eigen-boundary-value problem for differential equations, with the axial load being the eigenvalue. For a given configuration, two cases, namely symmetric and anti-symmetric buckling, are considered separately, and the one that dominates is accordingly determined. The complication in the sandwich construction arises due to the existence of additional “internal” conditions at the face sheet∕core interfaces. Results are produced first for isotropic phases (for which the simple formulas in the literature hold) and for different ratios of face-sheet vs core modulus and face-sheet vs core thickness. The results are compared with the different wrinkling formulas in the literature, as well as with the Euler buckling load and the Euler buckling load with transverse shear correction. Subsequently, results are produced for one or both phases being orthotropic, namely a typical sandwich made of glass∕polyester or graphite∕epoxy faces and polymeric foam or glass∕phenolic honeycomb core. The solution presented herein provides a means of accurately assessing the limitations of simplifying analyses in predicting wrinkling and global buckling in wide sandwich panels∕beams.


1998 ◽  
Vol 81 (16) ◽  
pp. 3387-3390 ◽  
Author(s):  
Leonardo Golubović ◽  
Dorel Moldovan ◽  
Anatoli Peredera

2001 ◽  
Vol 672 ◽  
Author(s):  
Leonardo Golubovic

ABSTRACTWe review recent systematic investigations of the dynamics of the classical Euler buckling of compressed solid membranes and thin sheets. We relate the membrane buckling dynamics to phase ordering phenomena. Evolving membranes develop wavelike patterns whose wavelength grows, via coarsening, as a power of time. We find that evolving membranes are similar to interfaces of thin films in molecular-beam epitaxy growth with slope selection: They are characterized by the presence of mounds whose typical size grows as a power of time. The morphologies of the evolving membranes are characterized by the presence of a network of growing ridges where the elastic energy is mostly concentrated. We used this fact to develop a scaling theory of the buckling dynamics that gives analytic estimates of the coarsening exponents. Our findings show that the membrane buckling dynamics is characterized by a distinct scaling behavior not found in other coarsening phenomena.


Sign in / Sign up

Export Citation Format

Share Document