Dielectric and Ferroelectric Properties of (Cr,Nb)-Doped Lead Zirconate Titanate Ceramics

2009 ◽  
Vol 421-422 ◽  
pp. 385-388
Author(s):  
Piyachon Ketsuwan ◽  
Anurak Prasatkhetragarn ◽  
Supon Ananta ◽  
Chien Chih Huang ◽  
David P. Cann ◽  
...  

The 3 mol% Nb2O5 doped Pb(Zr0.52Ti0.48)O3 with addition of 1-3 mol% Cr2O3 prepared via the solid-state reaction technique have been investigated. The XRD shows that a sample is primarily in both tetragonal and rhombohedral phases coexist and the amount of rhombohedral phase decreases that is due to the donor (Nb) dopant reduces the number of oxygen vacancies and leads to a lower amount of rhombohedral phase. The maximum dielectric constant tend to decrease with increasing Cr doping concentration from 0.1 to 1 mol%. Further increase in Cr concentration, the maximum dielectric constant increase dramatically. The hysteresis loop measurements, the electrical coercivity and the remnant polarization do not show a systematic trend at low concentration of Cr doping. It is possibly due to the partial solubility of Cr doping. The observations clearly indicate the hardening behavior at higher concentration because of more solubility of Cr.

Author(s):  
Dwight. Viehland ◽  
Z. Xu ◽  
X. H. Dai

The microstructural, structural, dielectric, and polarization properties of antiferroelectric PZST and PLZT ceramics have been studied as a function of Sn and La-contents, respectively. These materials are of interests for applications as antiferroelectric-ferroelectric phase switching actuators, however their transformational characteristics are currently unknown. In these systems, various ferroelectric and antiferroelectric phases have been reported over a narrow compositional range. These include: antiferroelectric orthorhombic, antiferroelectric tetragonal, rhombohedral ferroelectric, multi-cell cubic paraelectric, and single-cell cubic paraelectric. Dielectric anomalies are not observed at the ferroelectric to antiferroelectric or antiferroelectric to multicell cubic transformations. The maximum dielectric constant is found near the temperature of the formation of the multicell cubic state, which is ˜30°C above the transformation into the antiferroelectric tetragonal state. No macroscopic symmetry changes are observed near the temperature of the dielectric maximum.The compositional systems investigated in this study were (Pb1-xLax)(Zr1-yTiy)O3 (PLZT x/(1-y)/y) and Pb(0.98)Nb0.02[(Zr1-x,Snx)1-yTiy]1-zO3 (PZST x/y/2). The compositions chosen for study were PLZT 0/95/, 1/95/5, 2/95/5, 3/95/5 and 5/95, and PZST 45/0/2, 45/3/2, 45/6/2, and 45/9/2.


2004 ◽  
Vol 830 ◽  
Author(s):  
Hiroshi Nakaki ◽  
Hiroshi Uchida ◽  
Shoji Okamoto ◽  
Shintaro Yokoyama ◽  
Hiroshi Funakubo ◽  
...  

ABSTRACTRare-earth-substituted tetragonal lead zirconate titanate thin films were synthesized for improving the ferroelectric property of conventional lead zirconate titanate. Thin films of Pb1.00REx (Zr0.40Ti0.60)1-(3x /4)O3 (x = 0.02, RE = Y, Dy, Er and Yb) were deposited on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition (CSD). B-site substitution using rare-earth cations described above enhanced the crystal anisotropy, i.e., ratio of PZT lattice parameters c/a. Remanent polarization (Pr) of PZT film was enhanced by Y3+-, Dy3+- and Er3+-substitution from 20 μC/cm2 up to 26, 25 and 26 μC/cm2 respectively, while ion substitution using Yb3+ degraded the Pr value down to 16 μC/cm2. These films had similar coercive fields (Ec) of around 100 kV/cm. Improving the ferroelectric property of PZT film by rare-earth-substitution would be ascribed to the enhancement of the crystal anisotropy. We concluded that ion substitution using some rare-earth cations, such as Y3+, Dy3+ or Er3+, is one of promising technique for improving the ferroelectric property of PZT film.


2010 ◽  
Vol 105-106 ◽  
pp. 355-358 ◽  
Author(s):  
Z.L. Zhu ◽  
Dong Yan Tang ◽  
X.H. Zhang ◽  
Y.J. Qiao

To prevent the potential cracking of gel fibers, La modified lead zirconate titanate (PLZT) ceramic fibers with diameter within 50µm were achieved by embedding into PLZT powders during the heat treatment. Then the 1-3 PLZT fiber/interpenetrating polymer network (IPN) piezoelectric composites were prepared by casting the IPN precursors onto the well aligned ceramic fibers. The influences of the heating temperatures and La amounts on the dielectric constant, dielectric loss with frequencies and piezoelectric constant of PLZT were investigated in detail. The morphologies of fibers and composites were observed by biological microscope. And also, the dielectric constant of PLZT fibers and PLZT fiber/IPN piezoelectric composites were detected.


1991 ◽  
Vol 58 (25) ◽  
pp. 2910-2912 ◽  
Author(s):  
Hideo Kidoh ◽  
Toshio Ogawa ◽  
Akiharu Morimoto ◽  
Tatsuo Shimizu

2016 ◽  
Vol 06 (03) ◽  
pp. 1650019 ◽  
Author(s):  
V. M. Ishchuk ◽  
D. V. Kuzenko

The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into [Formula: see text]- and [Formula: see text]-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. [Formula: see text]-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of [Formula: see text]-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.


2008 ◽  
Vol 55-57 ◽  
pp. 369-372 ◽  
Author(s):  
T. Sreesattabud ◽  
Anucha Watcharapasorn ◽  
Sukanda Jiansirisomboon

Lead zirconate titanate/tungsten oxide (PZT/WO3) ceramics were prepared from the powders synthesized by a modified triol sol-gel processing method. In this study, the starting materials used for synthesis of PZT-sol were zirconium (IV) propoxide, titanium (IV) isopropxide, lead (II) acetate trihydrate and 1,1,1,- tris (hydroxymethyl) ethane. To prepare PZT/xWO3 powders (where x = 0, 0.5, 1 and 3 wt%), nano-sized WO3 was ultrasonically dispersed and mixed with the PZT sol, dried and calcined at 600°C for 4 h. X-ray diffraction results indicated that fully crystallized powders were obtained. Phase characterization suggested that at high WO3 concentration, the reaction between PZT and WO3 occurred during the calcination process. To prepare PZT/xWO3 ceramics, the powders were pressed and sintered at 1100°C for 6 h. Phase characterization by XRD indicated that the content of WO3 significantly affected tetragonal-to-rhombohedral phase transition. Microstructure of thermally etched samples showed that increasing the content of WO3 decreased grain size of the ceramics.


2021 ◽  
Vol 8 (3) ◽  
pp. 14-19
Author(s):  
Thuy Nguyen Thanh ◽  
Tung Nguyen Van ◽  
Hung Nguyen Trong ◽  
Minh Cao Duy

Lanthanum-doped lead zirconate titanate (PLZT) powders were synthesized using thehydrothermal method. The influence of pH, reaction temperature and time, lanthanum concentration on the formation and characteristics of PLZT were investigated. Obtained powders were investigated using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) techniques and a dielectric analyzer. The results showed that           Pb1-xLax(Zr0.65Ti0.35)O3 with x= 0.0 – 0.1 were well formed under conditions: pH≥13, reaction time of 12hrs, reaction temperature of 180oC. Dielectric constant of PLZT is higher than PZT. The grain size of the PLZT is found to be 1–3.5 µm.


2015 ◽  
Vol 9 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Rashmi Gupta ◽  
Seema Verma ◽  
Deepa Singh ◽  
Karan Singh ◽  
Krishen Bamzai

The solid solutions of lead nickel niobate (PNN) and lead zirconate titanate (PZT), with general formula 0.5 Pb(NixNb1-x)O3-0.5 PZT, where x = 1/3, 1/2 and 2/3 and Zr/Ti = 50/50, were prepared by conventional solid state reaction technique. The perovskite phase formation and morphology were examined by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. From microstructure investigations, the grain size was found to lie in the range of 0.2-1.1 ?m. Diffuse phase transition and dielectric relaxation was obtained for all three compositions. The nature of dielectric relaxation was investigated through complex plane Argand plot or Cole-Cole plot. It was found that both grains as well as grain boundary contribute to dielectric relaxation. A direct correlation between the grain size and electrical properties was obtained. The remnant polarization and grain size were found to follow the inverse relationship. The inverse relationship between remnant polarization and grain size was established.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Rashmi Gupta ◽  
Seema Verma ◽  
Vishal Singh ◽  
K. K. Bamzai

A ternary system of lead niobate–lead zirconate–lead titanate with composition xPN–yPZ–(x-y)PT where x=0.5 and y=0.15, 0.25, and 0.35 known as PNZT has been prepared by conventional mixed oxide route at a temperature of 1100°C. The formation of the perovskite phase was established by X-ray diffraction analysis. The surface morphology studied by scanning electron microscopy shows the formation of fairly dense grains and elemental composition was confirmed by energy dispersive X-ray analysis. Dielectric properties like dielectric constant and dielectric loss (ε′ and tan⁡δ) indicate poly-dispersive nature of the material. The temperature dependent dielectric constant (ε′) curve indicates relaxor behaviour with two dielectric anomalies. The poly-dispersive nature of the material was analysed by Cole-Cole plots. The activation energy follows the Arrhenius law and is found to decrease with increasing frequency for each composition. The frequency dependence of ac conductivity follows the universal power law. The ac conductivity analysis suggests that hopping of charge carriers among the localized sites is responsible for electrical conduction. The ferroelectric studies reveal that these ternary systems are soft ferroelectric.


Sign in / Sign up

Export Citation Format

Share Document