Thin Film of Palladium on Alumina Ceramic Membrane Tube: Effect of Combine Sol-Gel Process with Electroless Plating on Deposits Morphology

2010 ◽  
Vol 447-448 ◽  
pp. 700-704
Author(s):  
Sari Ratna ◽  
Zahira Yaakob ◽  
Ismail Manal ◽  
Wan Ramli Wan Daud

In this work, the potential of utilizing the porous alumina ceramic membrane coated with palladium as a hydrogen permselective membrane has been studied. The ceramic membrane is characterized by high permeability but at low hydrogen selectivity. In order to increase the pure hydrogen selectivity and to obtain high hydrogen yield on the ceramic membrane, palladium was coated on the alumina membrane surface. Such an arrangement would also enable the ceramic membrane to be operated at higher temperature. The preparation of the palladium coated ceramic membrane was carried out using combine sol-gel process and the electroless plating technique. The effect of combine sol-gel process with electroless plating towards deposits morphology, hydrogen permeability, and hydrogen permselectivity were analysed. The thickness and morphology of the α- Alumina and Pd composite membranes were analysed using a scanning electron microscopy (SEM) and atomic force microscopy (AFM).

2009 ◽  
Vol 620-622 ◽  
pp. 25-28
Author(s):  
Ji Hee Park ◽  
Mie Won Jung ◽  
Tae Whan Hong

The purpose of this work was hydrogen permeation of ceramic or metal/ceramic membrane using γ-Al2O3 by synthesizing. The γ-Al2O3 was synthesized by using the sol-gel process with aluminum isopropoxide and primary distilled water as the precursor and solvent. The γ-Al2O3-based membranes were prepared using HPS. The phase transformation, thermal evolution, surface are and morphology of γ-Al2O3 and γ-Al2O3-based membranes were characterized by XRD, TG-DTA, BET and FE-SEM. The hydrogen permeation of γ-Al2O3-based membranes was examined at room temperature comparing with other paper using nickel composited membrane on alumina ceramic support.


2011 ◽  
Vol 179-180 ◽  
pp. 1309-1313 ◽  
Author(s):  
Xiao Liang Zhang ◽  
Xu Feng Xie ◽  
Yan Huang

Pd-based composite membranes are the attractive membrane materials for hydrogen separation due to their high hydrogen permeability and infinite permselectivity. Thin pure Ni and Pd-Ni alloy membranes with high hydrogen permeation were prepared by the electroless plating method. It is difficult to prepare the dense pure Ni membranes with 1-2 μm thickness for hydrogen separation. However, Pd-Ni alloy membranes with several micrometers thickness showed good permeation performance. Hydrogen permeance of the Pd95Ni5 alloy membrane with fcc phase up to 3.1×10-6 mol/m2 s Pa and the ideal permselectivity over 600 were obtained at 773 K.


2004 ◽  
Vol 367 (1-2) ◽  
pp. 243-247 ◽  
Author(s):  
Yanxia Hao ◽  
Jiansheng Li ◽  
Xujie Yang ◽  
Xin Wang ◽  
Lude Lu

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jae-Yun Han ◽  
Chang-Hyun Kim ◽  
Sang-Ho Kim ◽  
Dong-Won Kim

For the commercial applications of hydrogen separation membranes, both high hydrogen selectivity and permeability (i.e., perm-selectivity) are required. However, it has been difficult to fabricate thin, dense Pd alloy composite membranes on porous metal support that have a pore-free surface and an open structure at the interface between the Pd alloy films and the metal support in order to obtain the required properties simultaneously. In this study, we fabricated Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity. The hydrogen selectivity of this membrane increased owing to the dense and pore-free microstructure of the membrane surface. The hydrogen permeation flux also was remarkably improved by the formation of an open microstructure with numerous open voids at the interface and by an effective reduction in the membrane thickness as a result of the porous structure formed within the Pd alloy films.


Sign in / Sign up

Export Citation Format

Share Document