Omnidirectional Vision Based Mobile Robot Hierarchical SLAM

2011 ◽  
Vol 464 ◽  
pp. 95-98
Author(s):  
Mao Hai Li ◽  
Li Ning Sun ◽  
Ming Qiang Pan

A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps of large environments is proposed. The local map level is composed of a set of local metric feature maps that are guaranteed to be statistically independent. The global level is a topological graph whose arcs are labeled with the relative location between local maps. An estimation of these relative locations is maintained with local map alignment algorithm, and more accurate estimation is calculated through a global minimization procedure using the loop closure constraint. The local map is built with Rao-Blackwellised particle filter (RBPF). The particle filter is used to extend the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark position estimation and update is also implemented through Kalman filter. Omnidirectional vision mounted on the robot tracks the 3D natural point landmarks, which are structured with matching Scale Invariant Feature Transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-Tree. Experimental results on real robot in a medium size, real indoor environment show the practicality and efficiency of our proposed method.

2019 ◽  
Vol 31 (2) ◽  
pp. 180-193
Author(s):  
Asahi Handa ◽  
◽  
Azumi Suzuki ◽  
Hisashi Date ◽  
Ryohsuke Mitsudome ◽  
...  

In this study, we propose a navigation system that guides a robot at a location visited for the first time, without developing a map in advance. First, it estimates the position of a path that exists on the local map by matching the metric route information and the local map generated by simultaneous localization and mapping (SLAM); this is achieved by using a particle filter. Then, the robot travels to the destination along the estimated route. In this system, the geometric accuracy of the route information specified in advance and the accuracy of the map generated by SLAM are essential. Furthermore, it is necessary to recognize the traversable area. The experiment performed verifies the matching of the route information and local map. In the autonomous running experiment, we conduct a trial run on a course set up at the University of Tsukuba.


2021 ◽  
Vol 13 (9) ◽  
pp. 1619
Author(s):  
Bin Yan ◽  
Pan Fan ◽  
Xiaoyan Lei ◽  
Zhijie Liu ◽  
Fuzeng Yang

The apple target recognition algorithm is one of the core technologies of the apple picking robot. However, most of the existing apple detection algorithms cannot distinguish between the apples that are occluded by tree branches and occluded by other apples. The apples, grasping end-effector and mechanical picking arm of the robot are very likely to be damaged if the algorithm is directly applied to the picking robot. Based on this practical problem, in order to automatically recognize the graspable and ungraspable apples in an apple tree image, a light-weight apple targets detection method was proposed for picking robot using improved YOLOv5s. Firstly, BottleneckCSP module was improved designed to BottleneckCSP-2 module which was used to replace the BottleneckCSP module in backbone architecture of original YOLOv5s network. Secondly, SE module, which belonged to the visual attention mechanism network, was inserted to the proposed improved backbone network. Thirdly, the bonding fusion mode of feature maps, which were inputs to the target detection layer of medium size in the original YOLOv5s network, were improved. Finally, the initial anchor box size of the original network was improved. The experimental results indicated that the graspable apples, which were unoccluded or only occluded by tree leaves, and the ungraspable apples, which were occluded by tree branches or occluded by other fruits, could be identified effectively using the proposed improved network model in this study. Specifically, the recognition recall, precision, mAP and F1 were 91.48%, 83.83%, 86.75% and 87.49%, respectively. The average recognition time was 0.015 s per image. Contrasted with original YOLOv5s, YOLOv3, YOLOv4 and EfficientDet-D0 model, the mAP of the proposed improved YOLOv5s model increased by 5.05%, 14.95%, 4.74% and 6.75% respectively, the size of the model compressed by 9.29%, 94.6%, 94.8% and 15.3% respectively. The average recognition speeds per image of the proposed improved YOLOv5s model were 2.53, 1.13 and 3.53 times of EfficientDet-D0, YOLOv4 and YOLOv3 and model, respectively. The proposed method can provide technical support for the real-time accurate detection of multiple fruit targets for the apple picking robot.


2021 ◽  
Author(s):  
Maral Partovibakhsh

For autonomous mobile robots moving in unknown environment, accurate estimation of available power along with the robot power demand for each mission is paramount to successful completion of that mission. Regarding the power consumption, the control unit deals with two tasks simultaneously: 1) it has to monitor the power supply (batteries) state of charge (SoC) constantly. This leads to estimation of robot current available power. Besides, batteries are sensitive to deep discharge or overcharge. The battery SoC is an essential factor in power management of a mobile robot. Accurate estimation of the battery SoC can improve power management, optimize the performance, extend the lifetime, and prevent permanent damage to the batteries. 2) The dynamic characteristics of the terrain the robot traverse requires rapid online modifications in its behaviour. The power required for driving a wheel is an increasing function of its slip ratio. For a wheeled robot moving for driving a wheel is an increasing function of its slip ratio. For a wheeled robot moving on different terrains, slip of the wheels should be checked and compensated for to keep the robot moving with less power consumption. To reduce the power consumption, the target robot moving with less power consumption. To reduce the power consumption, the target of the control system is to keep the slip ratio of the driving wheels around the desired value of the control system is to keep the slip ratio of the driving wheels around the desired value. To fulfill the above mentioned tasks, in this thesis, to increase model validity of lithium-ion battery in various charge/discharge scenarios during the mobile robot operation, the battery capacity fade and internal resistance change are modeled by adding them as state variables to a state space model. Using the output measured data, adaptive unscented Kalman Filter (AUKF) is employed for online model parameters identification of the equivalent circuit model at each sampling time. Subsequently, based on the updated model parameters, SoC estimation is conducted using AUKF. The effectiveness of the proposed method is verified through experiments under different power duties in the lab environment through experiments under different power duties in the lab environment. Better results are obtained both in battery model parameters estimation and the battery SoC estimation in comparison with other Kalman filter extensions. Furthermore, for effective control of the slip ratio, a model-based approach to estimating the longitudinal velocity of the mobile robot is presented. The AUKF is developed to estimate the vehicle longitudinal velocity and the wheel angular velocity using measurements from wheel encoders. Based on the estimated slip ratio, a sliding mode controller is designed for slip control of the uncertain nonlinear dynamical system in the presence of model uncertainties, parameter variations, and disturbances. Experiments are carried out in real time on a four-wheel mobile robot to verify the effectiveness of the estimation algorithm and the controller. It is shown that the controller is able to control the slip ratio of the mobile robot on different terrains while adaptive concept of AUKF leads to better results than the unscented Kalman filter in estimating the vehicle velocity which is difficult to measure in actual practice.


Sign in / Sign up

Export Citation Format

Share Document