Characteristics of Duplex Coating on Austenitic Stainless Steel

2011 ◽  
Vol 465 ◽  
pp. 255-258 ◽  
Author(s):  
Z. Joska ◽  
J. Kadlec ◽  
Vojtěch Hruby ◽  
T. Mrázková ◽  
K. Maňas

The aim of the article is describe duplex treatment of austenitic stainless steel X12CrNi 18 8 surface. Combination of both plasma nitriding and PVD coating by TiN/TiCN as a surface treatment has been used to improve material hardness and wear resistance without decreasing corrosion resistance. GDOES, confocal microscopy, microhardness, indentation test were applied to characterize the chemical composition, surface morphology, adhesion and hardness of duplex treated specimens.

2014 ◽  
Vol 598 ◽  
pp. 90-93 ◽  
Author(s):  
Xing Sheng Tong ◽  
Ting Zhang ◽  
Wei Ye

In this study, in order to explore a suitable method to obtain a better wear resistance and corrosion resistance of austenitic stainless steel, low temperature plasma carburizing technology has been studied. Research on the properties of austenitic stainless steel under different carburizing atmosphere proportion, with hardness, wear resistance and corrosion resistance as the properties characterization. The results shows that C3H8:H2=1:40 have better properties with the hardness of 950 HV0.05, the friction coefficient of about 0.25, which showed a better wear resistance. And also the corrosion rate of about 20.3g/m2·h showed a better corrosion resistance.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 366
Author(s):  
Kenzo Sumiya ◽  
Shinkichi Tokuyama ◽  
Akio Nishimoto ◽  
Junichi Fukui ◽  
Atsushi Nishiyama

Low-temperature active-screen plasma nitriding (ASPN) was applied in this study to improve the bending rigidity and corrosion resistance of a small-diameter thin pipe composed of austenitic stainless steel (SUS 304). The inner and outer diameters of the pipe were ϕ0.3 and ϕ0.4 mm, respectively, and the pipe length was 50 mm. The jig temperature was measured using a thermocouple and was adopted as the nitriding temperature because measuring the temperature of a small-diameter pipe is difficult. The nitriding temperature was varied from 578 to 638 K to investigate the effect of temperature on the nitriding layer and mechanical property. The nitriding layer thickness increased with an increase in nitriding temperature, reaching 15 μm at 638 K. The existence of expanded austenite (S phase) in this nitriding layer was revealed using the X-ray diffraction pattern. Moreover, the surface hardness increased with the nitriding temperature and took a maximum value of 1100 HV above 598 K. The bending load increased with an increase in the nitriding temperature in relation to the thicker nitriding layer and increased surface hardness. The nitrided samples did not corrode near the center, and corrosion was noted only near the tip at high nitriding temperatures of 618 and 638 K in a salt spray test. These results indicated that the bending rigidity of the small-diameter thin pipe composed of austenitic stainless steel was successfully improved using low-temperature ASPN while ensuring corrosion resistance.


2019 ◽  
Vol 36 (5) ◽  
pp. 524-530
Author(s):  
Dong Li ◽  
Jiqiang Wu ◽  
Bin Miao ◽  
Xiaobing Zhao ◽  
Changjun Mao ◽  
...  

2014 ◽  
Vol 881-883 ◽  
pp. 1263-1267 ◽  
Author(s):  
Shuo Zhao ◽  
Liang Wang ◽  
Jiu Jun Xu ◽  
Y. Shan

The duplex stainless steel has better pitting corrosion resistance but lacks of hardness and wear resistance. Therefore, the low temperature nitriding treatment can be used to increase its hardness and wear resistance or to gain more perfect corrosion resistance. The plasma nitriding of SS2205 stainless steel was carried out at temperatures from 693k to 753k for 4 hours at anodic potential. The nitrided samples were analyzed by optical microscopy, X-ray diffraction, SEM-EDX analysis, microhardness testing, wear and corrosion evaluation. The XRD analysis of all treated samples showed that the nitrogen-expanded austenite phase was formed. Both α and γ phase of the substrate were transformed into γNduring plasma nitriding. Observing the nitrided layers formed on α and γ phase, the ones situated in the austenite were thinner than the ones in the ferrite. This phenomenon was more evident at low temperature, which confirmed that the nitrogen has a higher diffusion rate in the ferrite during plasma nitriding treatment. The surface hardness of nitrided layer was increased with the nitriding temperature. The highest hardness value obtained in this experiment was about 1300 HV0.05which was 4 times as the original sample (380 HV0.05). Furthermore, through the wear and corrosion property tests, it was shown that anodic plasma nitriding improved the wear resistance and corrosion resistance of the duplex stainless steel.


2016 ◽  
Vol 23 (01) ◽  
pp. 1550084 ◽  
Author(s):  
YUXIN GAO ◽  
SHAOMEI ZHENG

Samples of AISI 201 austenitic stainless steel were produced by plasma nitriding at 350[Formula: see text]C, 390[Formula: see text]C, 420[Formula: see text]C, 450[Formula: see text]C and 480[Formula: see text]C for 5[Formula: see text]h. Systematic characterization of the nitrided layer was carried out in terms of micrograph observations, phase identification, chemical composition depth profiling, surface microhardness measurements and electrochemical corrosion tests. The results show that the surface hardness and the layer thickness increased with increasing temperature. XRD indicated that a single S-phase layer was formed during low temperature ([Formula: see text][Formula: see text]420[Formula: see text]C), while Cr2N or CrN phase was formed besides S-phase when nitrided at 450[Formula: see text]C and 480[Formula: see text]C. The specimen treated at 390[Formula: see text]C presents a much enhanced corrosion resistance compared to the untreated substrate. The corrosion resistance deteriorated for samples treated above 450[Formula: see text]C due to the formation of chromium nitrides.


2013 ◽  
Vol 228 ◽  
pp. S615-S618 ◽  
Author(s):  
Katharina Köster ◽  
Peter Kaestner ◽  
Günter Bräuer ◽  
Holger Hoche ◽  
Torsten Troßmann ◽  
...  

2018 ◽  
Vol 32 (3) ◽  
pp. 20
Author(s):  
Manas Kumar Saha ◽  
Ritesh Hazra ◽  
Ajit Mondal ◽  
Santanu Das

Alloy Digest ◽  
2013 ◽  
Vol 62 (9) ◽  

Abstract Ugima 440 HM is a general-purpose, corrosion resistant austenitic stainless steel with added molybdenum (300 series with 2–2.5% Mo). It features improved machinability compared with 4404 or 316L. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1156. Producer or source: Schmolz + Bickenbach USA Inc..


Alloy Digest ◽  
2013 ◽  
Vol 62 (8) ◽  

Abstract Carpenter CTS-BD30P alloy is a powder metal processed, air-hardening, martensitic stainless steel that offers corrosion resistance comparable with Type 440C stainless, combined with excellent toughness and wear resistance attributed to a high concentration of vanadium carbides. The Carpenter CTS family of alloys is used for many blade applications. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as heat treating and powder metal forms. Filing Code: SS-1154. Producer or source: Carpenter Specialty Alloys.


Sign in / Sign up

Export Citation Format

Share Document