A Model for Ultrasonic Testing Conical Transducer and Optimal Design

2011 ◽  
Vol 467-469 ◽  
pp. 800-805
Author(s):  
Chao Lu ◽  
Wei Xu

In this paper, a numerical modeling of contact conical transducers is discussed in conjunction with wave propagation analyses by a finite difference method (FDM). Although transducers are the devices to convert electrical energy into mechanical energy and vice versa, attention in this paper is paid mostly to the study of characteristics and parameters of cones and wedges influencing their performance. Cones and wedges inserted between an ultrasonic transducer and the specimen provide the transducer with enhanced capability for point or line contact with the specimen. We study the effect of the dimensions, shape and aperture on the frequency response and the angle of incidence of the wave. Through the testing transducer modeling, some conclusions have been drawn from the analysis, which is useful to as the guideline and criteria for an optimum conical wedge design.

2011 ◽  
Vol 52-54 ◽  
pp. 1074-1079
Author(s):  
Chao Lu ◽  
Ming Fang Zheng

Compare with the Rayleigh wave method, ultrasonic creeping waves critically technique for surface and subsurface defects nondestructive measurement for has the prominent advantage, which not sensitive to surface roughness in coarse-grained materials such as austenitic steel, In this paper, the propagation characteristics and beam profiles of the creeping probe were investigated using finite difference method and measured experimentally. The finite difference numerical model for reflection arc part of the IIW block was established. Through the numerical analysis, wavefront snapshots of the creeping wave propagated in the IIW block are very clear to illustrate the mechanism, and the directivity characteristic of the main beam is obtained. The creeping wave sound characteristics were observed using the dynamical photoelastic experimental method. The beam profiles of the creeping wave probe was measured on the IIW block, the experimental measurement results and the numerical analysis are in good agreement. The results are really significant to design an efficient producer for the surface and sub-surface defects detection based on the ultrasonic creeping wave method.In this paper, a numerical modeling of contact conical transducers is discussed in conjunction with wave propagation analyses by a finite difference method (FDM). Although transducers are the devices to convert electrical energy into mechanical energy and vice versa, attention in this paper is paid mostly to the study of characteristics and parameters of cones and wedges influencing their performance. Cones and wedges inserted between an ultrasonic transducer and the specimen provide the transducer with enhanced capability for point or line contact with the specimen. We study the effect of the dimensions, shape and aperture on the frequency response and the angle of incidence of the wave. Through the testing transducer modeling, some conclusions have been drawn from the analysis, which is useful to as the guideline and criteria for an optimum conical wedge design.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Tsuyoshi Inoue ◽  
Yukio Ishida ◽  
Masaki Sumi

An electromagnetic actuator has the property to convert mechanical energy to electrical energy and vice versa. In this study, an electromagnetic resonant shunt damper, consisting of a voice coil motor with an electric resonant shunt circuit, is proposed. The optimal design of the shunt circuit is obtained theoretically for this electromagnetic resonant shunt damper. Furthermore, the effects of parameter errors of the elements of the electromagnetic resonant shunt damper are also investigated. The applicability of the theoretical findings for the proposed damper is justified by the experimental analysis.


2019 ◽  
Vol 9 (15) ◽  
pp. 2946 ◽  
Author(s):  
Weiguang Zhang ◽  
Muhammad Arfan Akber ◽  
Shuguang Hou ◽  
Jiang Bian ◽  
Dong Zhang ◽  
...  

Non-destructive ultrasonic testing has attained popularity due to its robustness and cost-effectiveness in monitoring the structural health and performance evaluation of pavements, thus replacing traditional methods. This paper presents the application of an explicit finite element method for the modeling of ultrasonic wave propagation through asphalt concrete. Prior to modeling, non-destructive ultrasonic testing was conducted on four different types of asphalt concrete (AC-13, SMA-13, AC-20, and AM-20). Based on acoustic information (wave velocity) obtained in non-destructive testing (NDT) and density, the dynamic moduli of these asphalt concretes were evaluated and used in numerical modeling of ultrasonic wave propagation using the commercial software package ABAQUS. The ultrasonic wave results obtained by numerical modeling were compared with experimental results. This comparison showed a good fit between the finite element (FE) results and the experimental results and confirmed a good FE approach for ultrasonic wave propagation. In addition, the influence of varying dynamic moduli, density, varying location, and crack size/depth on ultrasonic wave propagation was analyzed.


2013 ◽  
Vol 275-277 ◽  
pp. 612-617
Author(s):  
Wen Sheng Zhang ◽  
Li Tong

In this paper, wave propagation in poroelastic medium is simulated with a staggered-grid finite-difference method. The formulation is discretized based on the second-order Biot’s equations rather than the corresponding velocity-stress form. In order to eliminate boundary reflections, the PML method is applied. Numerical computations are implemented and the results show the correctness and effectiveness of the schemes presented in this paper.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


Sign in / Sign up

Export Citation Format

Share Document