scholarly journals Influence of the Processing of Magnesium Alloys AZ31 and ZE10 on the Sheet Formability at Elevated Temperature

2011 ◽  
Vol 473 ◽  
pp. 335-342 ◽  
Author(s):  
Lennart Stutz ◽  
Jan Bohlen ◽  
Gerrit Kurz ◽  
Dietmar Letzig ◽  
Karl Ulrich Kainer

The substitution of conventional materials such as aluminium alloys and steels with the lightest structural metal magnesium and its alloys can yield significant weight saving in the transportation industry and hence, reduce vehicle weight and greenhouse gas emissions. Producing magnesium sheets by conventional hot rolling is expensive due to the large number of rolling passes to final gauge and annealing steps at elevated temperatures between the rolling passes. Twin roll casting is a well established processing route for aluminium sheets which can reduce the necessary rolling passes to a bare minimum to reduce the production costs. This process is receiving increasing attention for the production of magnesium sheets. This study reveals first hand results of sheet metal forming experiments on magnesium sheets rolled from twin roll cast strip as well as conventional DC cast slabs. Two different alloys, AZ31 (Mg-3Al-1Zn-Mn) and rare earth element containing ZE10 (Mg-1Zn-RE) were investigated. It is known that these alloys show significant differences in the microstructure development during conventional rolling as a result of recrystallisation. For hot rolled AZ31, distinct textures are formed with the majority of basal planes oriented in the sheet plane and hence, unfavourably for basal slip. Conventionally rolled ZE10 commonly shows a much weaker texture. Forming limit diagrams are presented and discussed with respect to the initial texture of the sheets. Strain response to various strain paths and plastic anisotropy are evaluated. Results of twin roll cast sheets are compared with conventionally hot rolled sheet of the same alloys. Competitive formability can be achieved at 200°C for all tested sheets. While conventionally rolled sheets show a generally higher formability than their twin roll cast counterparts, ZE10 outperforms AZ31 for both processing routes.

2011 ◽  
Vol 690 ◽  
pp. 298-301 ◽  
Author(s):  
Dietmar Letzig ◽  
Lennart Stutz ◽  
Jan Bohlen ◽  
Karl Ulrich Kainer

Sheet metal forming experiments have been carried out on AZ31 and ZE10 sheets produced by rolling conventionally DC cast slabs as well as twin roll cast (TRC) strips. Nakajima tests were performed on the various sheet materials over the temperature range from RT to 200 °C using Hasek type samples of specified geometries to generate various strain paths. The strain path data were used to derive the forming limit curves as plotted in forming limit diagrams for the two alloys. The temperature dependence of the sheet formability is discussed in terms of the operating deformation mechanisms and the roles of alloy composition, initial texture and processing history.


2017 ◽  
Vol 746 ◽  
pp. 154-160 ◽  
Author(s):  
Thorsten Henseler ◽  
Madlen Ullmann ◽  
Rudolf Kawalla ◽  
Franz Berge

In the age of lightweight design, magnesium alloys play an increasing role in weight reduction of transport vehicles. The specific strength compared to aluminium alloys and steel grades is superior, giving the material great potential in lightweight application. The automobile and aeronautic industry use sheet metals with minimum thicknesses, making research in this field very important. Successful sheet metal forming depends on various process parameters and material characteristics. Thus, the influence of sheet thickness on the forming limit behaviour of twin-roll cast, rolled and heat-treated AZ31 was investigated. Nakajima tests were performed on a hydraulic sheet metal testing device at elevated temperatures with various sheet thicknesses from 0.6 mm to 2.0 mm. The results show an increase in formability with rising temperatures for all sheets. Furthermore, changes in formability among the sheet thicknesses were linked to their divergent microstructures, which result from the different sheet manufacturing parameters.


2007 ◽  
Vol 555 ◽  
pp. 559-563 ◽  
Author(s):  
Kemal Delijić ◽  
V. Asanović ◽  
Dragan Radonjić

The paper deals with the effects of thermo-mechanical processing parameters on the properties of two Al-Fe-Si foil alloys. Two twin roll cast alloys with high Fe/Si ratios (Fe/Si≈6) were processed under different combinations of homogenization, deformation and annealing treatments. The influence of small additions of manganese on the mechanical behavior and plastic anisotropy of sheets in hardening and annealing conditions are described. The corrosion resistance of tested sheets in chloride ambience is also presented, because this type of Al foils is dominantly used in the packaging (food) industry and heat exchangers.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 987
Author(s):  
Olexandr Grydin ◽  
Mykhailo Stolbchenko ◽  
Mirko Schaper ◽  
Sára Belejová ◽  
Rostislav Králík ◽  
...  

Al-Li based alloys are attractive materials for the aerospace industry. The twin-roll casting of such materials could provide properties not achievable by conventional direct-chill casting and downstream processing methods due to significantly higher solidification rates. An Al-Li-Cu-Mg-Zr alloy was twin-roll cast with the same alloy containing a small addition of Sc. The microstructure of as-cast materials and the influence of Sc on the behavior of the alloy at elevated temperatures were studied by means of light and electron microscopy and by resistivity measurements. A fine-grained structure was formed during twin-roll casting, but several surface and internal defects were found on the strips, which should be suppressed by a further adjustment of the casting conditions. The addition of Sc had a positive effect on grain size uniformity and microstructure stabilization at elevated temperatures, as shown by the precipitation of a fine dispersion of coherent Sc- and Zr-containing precipitates.


2013 ◽  
Vol 765 ◽  
pp. 170-174 ◽  
Author(s):  
Sanjeev Das ◽  
Shou Xun Ji ◽  
Omer El Fakir ◽  
Li Liang Wang ◽  
John P. Dear ◽  
...  

In this paper we introduce a novel process for the production of thin-walled magnesium components by direct stamping of twin roll cast thin Mg strips. In this process, the melt conditioned twin roll casting (MC-TRC) process is used to produce thin Mg strips (thickness <2 mm) which have a fine equiaxed grain structure and little basal texture and, more importantly, are free from centreline segregation. Such thin Mg strips can be used for thin-walled component production by direct stamping without any rolling. A major advantage of this process is that it circumvents the low formability problem inherently associated with Mg based alloys. In this paper, AZ31 alloy is used to demonstrate this new process. For both TRC and MC-TRC strips, we will analyze the microstructures, assess the mechanical performance at elevated temperatures and conduct hot stamping in the as-cast condition without any prior rolling.


2015 ◽  
Vol 60 (4) ◽  
pp. 2751-2756
Author(s):  
M. Hyrcza-Michalska ◽  
R. Kawalla ◽  
J. Dembińska

Abstract The paper presents the results of a study of drawability of thin AZ31 magnesium alloy metal sheets. These studies are a continuation of experiences in presenting the characteristics of technological plasticity of strips made of magnesium alloy which have been cast between rolls in vertical and horizontal systems called ‘twin-roll casting’. In the context of previous experiments conducted at the Institute of Material Technology of the Silesian University of Technology in cooperation with the Technical University - Bergakademie Freiberg (Germany), drawability of these strips at elevated temperatures has been comprehensively defined while using forming limit curves. Due to low formability of magnesium alloys at ambient temperature, formability tests - including cup forming tests presented in this paper - have been carried out in heated dies at temperature range of 200°C to 350°C. A modern AutoGrid digital local strain analyzer has been used in the examinations and the method of image analysis of deformed coordination nets has been applied. Quantitative and qualitative impact of deformation temperature upon the drawability effects of AZ31 magnesium alloys products have been evaluated.


Sign in / Sign up

Export Citation Format

Share Document