Role of Sputtering Power on the Structural and Optical Properties of ZnO/SiO2 Films Deposited by Radio Frequency Magnetron Sputtering

2013 ◽  
Vol 760-762 ◽  
pp. 776-779
Author(s):  
Shuang Li ◽  
Ming Chen ◽  
Feng Xiang Wang

In the present work, we investigated the effect of sputtering power on the structural and optical properties of ZnO films by radio frequency (rf) magnetron sputtering. Atom force microscopy (AFM), X-ray diffraction (XRD) and Prism coupling method were adopted to investigate the structure and optical properties of ZnO thin films deposited by sputtering powers in the range from 100~150W. XRD and AFM results shown that ZnO films with high c-axis preferred orientation crystalline structures have been successfully deposited under higher sputtering power condition. Moreover, it was also found that the indexes refractive of the films obtained by higher sputtering power are less than that of the bulk ZnO materials, which is closer to Crystal Refractive index.

2014 ◽  
Vol 1053 ◽  
pp. 325-331
Author(s):  
Yang Zhou ◽  
Hong Fang Zheng ◽  
Guang Zhao ◽  
Man Li ◽  
Bao Ting Liu

ZnO thin film has been fabricated on sapphire substrate (0001) using RF magnetron sputtering at room temperature. The influence of sputtering power ranging from 10 W to 70 W on the microstructural and optical properties of ZnO films is investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer. The AFM results show that with the increase of sputtering power, the size of ZnO crystalline increases first, then decrease and the maximum grain size occurs at 50 W. The XRD measurements indicate that the ZnO films with wurtzite structure are highly c-axis orientation and the film fabricated at 50 W has the best crystalline quality. Optical transmission spectra of the ZnO samples demonstrate that the ZnO film obtained at 50 W has the higher average transmission (above 90%) in the visible-light region and its optical band gap is 3.26 eV.


2011 ◽  
Vol 493-494 ◽  
pp. 473-476
Author(s):  
E.O. Lopez ◽  
F.F. Borghi ◽  
Alexandre Mello ◽  
J. Gomes ◽  
Antonella M. Rossi

In this present work, we characterize HAp thin films deposited by dual magnetron sputtering device DMS on silicon (Si/HAp). The sputtering RF power was varied from 90 watts to 120 watts and deposition times from 60 to 180 minutes. The argon and oxygen pressure were fixed at 5.0 mTorr and 1.0 mTorr, respectively. Grazing incidence X-ray diffraction (GIXRD) from synchrotron radiation, infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the structural characterization. At lower deposition times, a crystalline phase with preferential orientation along apatite (002) and a disordered nanocrystalline phase were identified. The coating crystallinity was improved with the increase of the deposition time besides the sputtering power.


2014 ◽  
Vol 602-603 ◽  
pp. 966-969
Author(s):  
Lei Zhang ◽  
Jian Huang ◽  
Hui Min Yang ◽  
Ke Tang ◽  
Mei Ai Lin ◽  
...  

In this work, zinc sulfide (ZnS) thin films were prepared by radio frequency (RF) magnetron sputtering on glass substrates. The effects of sputtering power, working pressure, substrate temperature and annealing treatment on the structural and optical properties of ZnS films were studied using X-ray diffraction and UV-visible spectrometer in detailed.


2013 ◽  
Vol 20 (01) ◽  
pp. 1350008 ◽  
Author(s):  
M. AMIRHOSEINY ◽  
Z. HASSAN ◽  
S. S. NG ◽  
G. ALAHYARIZADEH

The structure and optical properties of InN thin film grown on 6H-SiC by reactive radio frequency magnetron sputtering were investigated. X-ray diffraction measurement shows that the deposited InN film has (101) preferred growth orientation and wurtzite structure. Atomic force microscopy results reveal smooth surface with root-mean-square roughness around 3.3 nm. One Raman-active optical phonon of E2(high) and two Raman- and infrared-active modes of A1(LO) and E1(TO) of the wurtzite InN are clearly observed at 488.7, 582.7 and 486 cm-1, respectively. These results leading to conclude that the wurtzite InN thin film with (101) preferred growth orientation was successfully grown on 6H-SiC substrate.


2013 ◽  
Vol 307 ◽  
pp. 333-336
Author(s):  
Shiuh Chuan Her ◽  
Tsung Chi Chi

Zinc oxide (ZnO) thin films were deposited on glass substrate by Radio frequency (RF) magnetron sputtering. The effect of substrate temperature on the microstructure of the ZnO films has been investigated. Crystal structure and surface morphology of the films were examined by X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD patterns and AFM images show that the crystallinity and grain size are increasing with the increase of substrate temperature.


2012 ◽  
Vol 576 ◽  
pp. 602-606
Author(s):  
Samsiah Ahmad ◽  
N.D.M. Sin ◽  
M.N. Berhan ◽  
Mohamad Rusop Mahmood

Zinc Oxide (ZnO) films were prepared on unheated glass substrate by radio frequency (RF) magnetron sputtering technique and post deposition annealing of the ZnO thin film were performed at 350, 400, 450 and 500°C. Post annealing temperature was found to improve the structural and electrical characteristics of the deposited films. The structural properties of the films were carried out by the surface profiler, X-Ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) while the electrical properties were measured using current voltage (I-V) probe measurement system. All samples exhibit the (002) peak and the sample annealed at 500°C gives the highest crystalline quality, highest Rms roughness (1.819 nm) and highest electrical conductivity (3.28 x 10-3 Sm-1).


Sign in / Sign up

Export Citation Format

Share Document