Mechanical, Morphological and Thermally Behaviors of Natural Rubber/Aluminum Powder Composites

2012 ◽  
Vol 501 ◽  
pp. 289-293
Author(s):  
Hui Jun Niu ◽  
Zhi Yi Zhang ◽  
Wei Guo ◽  
Yi Xue ◽  
Zhen Xing Yao

Different content of aluminum powder was mixed into natural rubber. Aluminum powder was modified by different coupling agents via wet method, and the modified aluminum filler/NR composite was prepared. The mechanical properties, thermal conductivity and thermogravimetric analysis of the composites was investigated. The results showed that the best physical properties and thermal conductivity of composites were achieved with saline coupling agent Si-69, and Thermo decomposing temperature of 3%TM-38S matching composites improved evidently. SEM test indicated that boundary surface of aluminium fillers and rubber was obviously improved when aluminum powder was modified by coupling agent, which would result in preferable mechanical property. The result of Thermogravimetric analysis showed that after aluminum powder filler was modified by three coupling agents, thermo decomposing temperature and hot lost weight of composites rose obviously. With the increase of Al powder content the thermal conductivity improved greatly, Thermal conductivity of Al/NR composites lay between 0.25 and 0.47 W·m-1·K-1.

2014 ◽  
Vol 87 (2) ◽  
pp. 291-310 ◽  
Author(s):  
W. Kaewsakul ◽  
K. Sahakaro ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT Polar functionality attached onto natural rubber has a significant impact on the reinforcing efficiency of silica. Parallel studies involving various levels of epoxidation on natural rubber (ENR) in the absence of bis-(triethoxysilylpropyl) tetrasulfide (TESPT) coupling agent, as well as a combination of ENRs with different loadings of TESPT, provide a better understanding of the various factors that influence the properties of silica-filled ENR compounds. Based on the overall properties, the best possible combination to optimize processability, to reduce filler–filler interaction, and improve vulcanization rate as well as vulcanizate properties, is to use ENR with an epoxide content in the range of 20–30 mol%, together with a small portion of TESPT, that is, 2–4 wt% relative to the silica content. This leads to a reduction of approximately 60–80% of TESPT when compared with the conventional NR compounds, where the optimal loading of TESPT was 9.0 wt% relative to the silica content.


2013 ◽  
Vol 795 ◽  
pp. 433-437 ◽  
Author(s):  
S.T. Sam ◽  
N.Z. Noriman ◽  
S. Ragunathan ◽  
O.H. Lin ◽  
H. Ismail

Soya spent powder as an inexpensive and renewable source has been used as a filler for linear-low density polyethylene (LLDPE) in this study. Linear-low density polyethylene (LLDPE)/soya spent powder composites were prepared by using Haake internal mixer. The mixing time was 10 minutes at 150°C with rotor speed 50 rpm. Epoxidised natural rubber (ENR 50) has been used as a compatibilizer in the present study. The thermal properties of the LLDPE/soya spent powder composites with and without ENR were studied with a differential scanning calorimetry (DSC). The crystallinity of the LLDPE/soya spent powder composites decreased with increasing soya spent powder content. However, the addition of ENR 50 as a compatibilizer increased the crystallinity of the LLDPE/soya spent powder composites.


2001 ◽  
Vol 74 (2) ◽  
pp. 236-248 ◽  
Author(s):  
V. S. Vinod ◽  
Siby Varghese ◽  
Rosamma Alex ◽  
Baby Kuriakose

Abstract The effect of aluminum powder on the properties of natural rubber composites containing high abrasion furnace black (HAF), general purpose furnace black (GPF), acetylene black, china clay and precipitated silica was studied. In all cases the total filler content including aluminum powder is fixed at 40 parts per hundred rubber (phr). Gradual replacement of these fillers by aluminum powder showed a marked increase in thermal conductivity. This increased thermal conductivity of aluminum powder filled composites decreased the vulcanization time and led to uniform curing throughout the material, especially for thick articles. Mechanical properties like tensile strength, tear strength, rebound resilience, heat build-up, hardness, compression set, etc., are comparatively better for these composites. Aluminum powder incorporated vulcanizates also showed good resistance against thermal aging and oxidative degradation. Thus, use of aluminum powder in rubber compounds can lead to energy saving in the vulcanization of thick rubber articles and enhance the service life of such rubber products.


2012 ◽  
Vol 18 (3) ◽  
pp. 184-191 ◽  
Author(s):  
Natita Hamaviriyapornwattana ◽  
Narongrit Sombatsompop ◽  
Teerasak Markpin ◽  
Apisit Kositchaiyong ◽  
Ekachai Wimolmala

2013 ◽  
Vol 664 ◽  
pp. 677-682
Author(s):  
Hambali Raden Siti Amirah ◽  
Ahmad Faiza Mohd ◽  
Mohd Firdaus Yhaya ◽  
Rahmah Mohamed ◽  
Mohamed Nur Raihan

The effect of different carbonizing agents; ethylene glycol, glycerol, and pentaerythritol to the char formation were studied in this research. After burning process, formulation with ethylene glycol, glycerol, and pentaerythritol showed chars thickness of 10 mm, 32 mm, and 45 mm. The chars’ strength at peak force was recorded at 3.20 N, 7.75 N, and 9.48 N while the burning rate of each sample were 5.23 x 10-4 mm/s, 4.20 x10-4 mm/s, and 6.24 x10-4 mm/s respectively. Formulation with glycerol as carbonizing agent showed the lowest burning rate as compared to the other formulations. Additional formulation with glycidyl silane as coupling agent in glycerol formulation was also studied. The formation of chemical bonding between silane, glycerol, and epoxy glycerol was confirmed by Fourier Transform Infrared (FTIR) absorption peak at 767.25 cm-1. The burning rate was 1.44 x 10-5 mm/s after silane treatment. Thermal degradation of the silane-treated resin started at 220°C as measured by thermogravimetric analysis (TGA).


Author(s):  
Oscar Palacio ◽  
Emilio Delgado

The effect of the addition of maleated polyethylene (MAPE) to compounds of natural rubber (NR) and Teline monspessulana flour (TMF) previously mercerized was investigated. Two factors were analyzed: A. concentration of MAPE with five levels 2; 4; 6; 8; 10 phr (parts per hundred rubber), B. concentration of TMF with two levels 25 and 40 phr. The effect of MAPE on compatibility between NR and HTM was evaluated by tensile testing the compounds. The mixing was performed in a laboratory scale mill. The test tubes were obtained by cutting or die-cutting crosslinked peroxide sheets, these were obtained during the compression molding process. Analysis indicate that the MAPE coupling agent improved the compatibility between HTM and NR, this effect was evidenced by the values of tensile strength and elongation at break. However, the gel content determination indicates that the addition of 10 phr of MAPE crosslinking decreases due to competition with coupling reaction MAPE - HTM.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6080-6094
Author(s):  
Muhammed Said Fidan ◽  
Murat Ertaş

The procedure for the liquefaction of apricot stone shells was reported in Part 1. Part 2 of this work determines the morphological, mechanical, and thermal properties of the bio-based rigid polyurethane foam composites (RPUFc). In this study, the thermal conductivity, compressive strength, compressive modulus, thermogravimetric analysis, flammability tests (horizontal burning and limited oxygen index (LOI)) in the flame retardants), and scanning electron microscope (SEM) (cell diameter in the SEM) tests of the RPUFc were performed and compared with control samples. The results showed the thermal conductivity (0.0342 to 0.0362 mW/mK), compressive strength (10.5 to 14.9 kPa), compressive modulus (179.9 to 180.3 kPa), decomposition and residue in the thermogravimetric analysis (230 to 491 °C, 15.31 to 21.61%), UL-94 and LOI in the flame retardants (539.5 to 591.1 mm/min, 17.8 to 18.5%), and cell diameter in the SEM (50.6 to 347.5 μm) of RPUFc attained from liquefied biomass. The results were similar to those of foams obtained from industrial RPUFs, and demonstrated that bio-based RPUFc obtained from liquefied apricot stone shells could be used as a reinforcement filler in the preparation of RPUFs, specifically in construction and insulation materials. Moreover, liquefied apricot stone shell products have potential to be fabricated into rigid polyurethane foam composites.


1999 ◽  
Vol 35 (9) ◽  
pp. 1687-1693 ◽  
Author(s):  
N.S. Saxena ◽  
P. Pradeep ◽  
G. Mathew ◽  
S. Thomas ◽  
M. Gustafsson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document