Ba2TiO4 and Ba4Ti13O30 Thick Films Prepared by Laser Chemical Vapor Deposition and their Microstructure

2012 ◽  
Vol 508 ◽  
pp. 199-202
Author(s):  
Dong Yun Guo ◽  
Akihiko Ito ◽  
Rong Tu ◽  
Takashi Goto

Ba2TiO4 and Ba4Ti13O30 Thick Films Were Prepared by Laser Chemical Vapor Deposition Using Ba- and Ti-Dipivaloylmethanate Precursors. Single-Phase Ba2TiO4 Thick Films Were Obtained at 845–946 K and Ba/Ti Source Molar Ratio 2.4. Single-Phase Ba4Ti13O30 Films Were Obtained at 944–1011 K and Ba/Ti Source Molar Ratio 0.38. Ba2TiO4 Thick Films Consisted of Truncated Grains, while Ba4ti13o30 Thick Films Had Shellfish-Like Grains. Ba2TiO4 and Ba4Ti13O30 Thick Films Showed a Columnar Growth and their Deposition Rates Were 72 and 132 μm h−1, Respectively.

2014 ◽  
Vol 616 ◽  
pp. 223-226
Author(s):  
Chen Chi ◽  
Hirokazu Katsui ◽  
Rong Tu ◽  
Takashi Goto

α-LiAl5O8, γ-LiAlO2, α-Al2O3and those composite films were prepared on AlN polycrystalline substrates by laser chemical vapor deposition (LCVD), and the effects of total pressure (Ptot) and the molar ratio of Li to Al (RLi/Al) on the morphology and deposition rates were investigated. The typical morphology of single-phase γ-LiAlO2films prepared atRLi/Al> 1.0 andPtot> 400 Pa was granular, whereas γ-LiAlO2films prepared atPtot< 200 Pa and γ-LiAlO2-α-LiAl5O8composite films had pyramidal grains. Single-phase α-LiAl5O8films showed polygonally faceted morphologies. Composite films of α-LiAl5O8and α-Al2O3consisted of carifllower-like and faceted grains. A single-phase γ-LiAlO2film deposited at 200 Pa showed the maximum deposition rate of 48 μm h-1.


2012 ◽  
Vol 508 ◽  
pp. 207-210
Author(s):  
Akihiko Ito ◽  
Mitsutaka Sato ◽  
Takashi Goto

C-Axis-Oriented Y2Ba4Cu7O15-δ (Y247) Films Were Prepared on Multilayer-Coated Hasterolly Tape Substrate by Laser Chemical Vapor Deposition with Ultrasonically Nebulized Liquid Precursor. At a Low Precursor Concentration of 0.01 mol l−1 and Deposition Temperature of 933 K, Single-Phase Y247 Film with Significant c-Axis Orientation Was Obtained. At a Precursor Concentration of 0.1 mol l−1 and Deposition Temperature 983 K, a-Axis-Oriented YBa2Cu3O7-δ (Y123) Was Codeposited with C-Axis Oriented Y247 Film.


2014 ◽  
Vol 616 ◽  
pp. 141-144
Author(s):  
Chen Chi ◽  
Hirokazu Katsui ◽  
Rong Tu ◽  
Takashi Goto

(004)-oriented γ-LiAlO2films were prepared on poly-crystalline AlN substrates by laser chemical vapor deposition at deposition temperature (Tdep) of 1100–1250 K, molar ratio of Li/Al (RLi/Al) of 1.0–10 and low total pressure (Ptot) of 100–200 Pa. The (004)-oriented γ-LiAlO2films consisted of pyramidal grains with a columnar structure. The deposition rate of (004)-oriented γ-LiAlO2films reached to 65–72 μm h-1.


2006 ◽  
Vol 317-318 ◽  
pp. 495-500 ◽  
Author(s):  
Takashi Goto ◽  
Teiichi Kimura

Thick oxide coatings have wide-ranged applications typically thermal barrier coatings. Although high speed deposition processes, often plasma spray or electron-beam physical vapor deposition, have been employed for these applications, another route has been pursued to improve the performance of coatings. We have proposed laser chemical vapor deposition (LCVD) for high-speed and thick oxide coatings. Conventional CVD can fabricate coatings at deposition rates of several to several 10 μm/h, and conventional LCVD has been mainly focused on thin film coatings and low temperature deposition. In the present LCVD, high-speed deposition rates ranging from 300 to 3000 μm/h have been achieved for several oxide coatings such as yttria stabilized zirconia (YSZ), TiO2, Al2O3 and Y2O3. This paper describes the effect of deposition conditions on the morphology and deposition rates for the preparation of YSZ and TiO2 by LCVD.


Sign in / Sign up

Export Citation Format

Share Document