Development of a Magnified Mechanism for Fast Tool Servo System

2012 ◽  
Vol 516 ◽  
pp. 317-320 ◽  
Author(s):  
Hong Lu ◽  
S.C. Choi ◽  
S.M. Lee ◽  
C.H. Park ◽  
D.W. Lee

Flexure-hinge mechanisms are commonly used in the design of translational micro/nanopositioning stages. They can offer a drive system with negligible friction and no need for lubrication. Usually, a large motion range requires the use of a very long actuator which could interfere with a tight workplace. A lever which amplifies the input motion of a short actuator is an effective technique to solve the problem. This paper presents the methodology for the design of a lever-type magnified flexure mechanism used for the ultra precision fast tool servo (FTS) system. A lever type hinge mechanism is designed and utilized to guide the tool holder and to preload the PZT actuator. A low capacitance PZT actuator is adopted to match the given amplifier to achieve optimum performance of device displacement. A high resolution capacitive sensor is utilized to measure the natural displacement of the tool holder. An amplifier with a multiplying factor of 12 is utilized to magnify the drive signal for the expansion and retraction of the PZT actuator. Meanwhile, the motion range of the FTS system can reach up to 98.12 μm with a primary resonant frequency of about 460 Hz, and the amplification of the lever flexure mechanism is approximately 5 as calculated from the experiment.

CIRP Annals ◽  
2021 ◽  
Author(s):  
Yuan-Liu Chen ◽  
Fuwen Chen ◽  
Zhongwei Li ◽  
Yang Zhang ◽  
Bingfeng Ju ◽  
...  

Author(s):  
Shorya Awtar ◽  
John Ustick ◽  
Shiladitya Sen

We present the constraint-based design of a novel parallel kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz). The geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via non-linear finite element analysis. A proof-of-concept prototype of the flexure mechanism is fabricated to validate its large range and decoupled motion capability. The analyses as well as the hardware demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the non-linear FEA predicts a cross-axis error of less than 3%, parasitic rotations less than 2 mrad, less than 4% lost motion, actuator isolation less than 1.5%, and no perceptible motion direction stiffness variation. Ongoing work includes non-linear closed-form analysis and experimental measurement of these error motion and stiffness characteristics.


2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Shorya Awtar ◽  
John Ustick ◽  
Shiladitya Sen

A novel parallel-kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz) is presented. Geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via nonlinear finite elements analysis (FEA). A proof-of-concept prototype is fabricated to validate the predicted large range and decoupled motion capabilities. The analysis and the hardware prototype demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the nonlinear FEA predicts cross-axis errors of less than 7.8%, parasitic rotations less than 10.8 mrad, less than 14.4% lost motion, actuator isolation better than 1.5%, and no perceptible motion direction stiffness variation.


2007 ◽  
Vol 73 (12) ◽  
pp. 1345-1349 ◽  
Author(s):  
Toshihiko WADA ◽  
Masayuki TAKAHASHI ◽  
Toshimichi MORIWAKI ◽  
Keiichi NAKAMOTO

2021 ◽  
Vol 21 (4) ◽  
pp. 17-23
Author(s):  
V. O. Krasovskij ◽  
L. M. Karamova ◽  
G. R. Basharova

Clause analyzes the reasons of professional risks for health of the personnel of exit brigades of the first help. Clinical and hygienic researches in regional substation of a megacity have shown that in labour activity of these workers it is necessary to consider as leading professional harm action of transport vibration. The given circumstance and other reasons provide professional risks of development of illnesses of cardiovascular, bone-muscular system, a gastroenteric path. The interdepartmental complex of actions on improvement of operating conditions of the exit personnel is offered.


Studia Humana ◽  
2020 ◽  
Vol 9 (3-4) ◽  
pp. 120-130
Author(s):  
Tomasz Jarmużek ◽  
Mateusz Klonowski ◽  
Rafał Palczewski

AbstractIn this paper, we indicate how Jan Woleński’s non-linguistic concept of the norm allows us to clarify the deontic relationship between sentences and the given normative system. A relationship of this kind constitutes a component of the metalogic of relating deontic logic, which subjects the logical value of the deontic sentence to the logical value of the constituent sentence and its relationship with a given normative system in the accessible possible worlds.


Author(s):  
Gleb L. Kotkin ◽  
Valeriy G. Serbo

If the potential energy is independent of time, the energy of the system remains constant during the motion of a closed system. A system with one degree of freedom allows for the determination of the law of motion in quadrature. In this chapter, the authors consider motion of the particles in the one-dimensional fields. They discuss also how the law and the period of a particle moving in the potential field change due to adding to the given field a small correction.


Author(s):  
Chao Huo ◽  
Nestor Gonzalez Diez ◽  
Arvind Gangoli Rao

The Advisory Council for Aeronautics Research in Europe (ACARE) has set an ambitious array of objectives to be accomplished by 2050. It is often claimed that complying with those targets will not require evolution but, rather, revolution. If the growth in aviation has to be sustained in the future then we must come up with radical aircraft and engine configurations which can meet the demands of future aviation. The contra-rotating fan is one such system which can play an important role in the future engine configurations, such as the hybrid engine configuration that is being investigated in the EU cofounded AHEAD project. In order to design a CRF system, a 1-D code has been developed based on the inverse Blade Element Method (BEM) to design a contra rotating fan. The CRF design obtained from this methodology is then analyzed with a full 3D RANS simulation. The numerical analysis revealed that the performance of the first rotor satisfies with the given design requirements in terms of both pressure ratio and isentropic efficiency, thus proving the efficacy of using the 1-D code for designing the CRF. However, the performance of the rear rotor does not reach the design demands. It was observed that there is a strong flow separation around the root and a strong normal shock in the blade passage near the tip. It was found that there is a great difference between the blade metal inlet angles and the relative flow inlet angles near the root of the rear rotor. One of the main reasons for this is the calculation of the axial velocity depending on the vortex design and the resolution of the radial equilibrium. Based on the CFD simulations, the design code could be further modified to improve the design of CRF.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yasser Mohamed Hamada

A new method based on shifted Chebyshev series of the first kind is introduced to solve stiff linear/nonlinear systems of the point kinetics equations. The total time interval is divided into equal step sizes to provide approximate solutions. The approximate solutions require determination of the series coefficients at each step. These coefficients can be determined by equating the high derivatives of the Chebyshev series with those obtained by the given system. A new recurrence relation is introduced to determine the series coefficients. A special transformation is applied on the independent variable to map the classical range of the Chebyshev series from [-1,1] to [0,h]. The method deals with the Chebyshev series as a finite difference method not as a spectral method. Stability of the method is discussed and it has proved that the method has an exponential rate of convergence. The method is applied to solve different problems of the point kinetics equations including step, ramp, and sinusoidal reactivities. Also, when the reactivity is dependent on the neutron density and step insertion with Newtonian temperature feedback reactivity and thermal hydraulics feedback are tested. Comparisons with the analytical and numerical methods confirm the validity and accuracy of the method.


Author(s):  
Mark Pallay ◽  
Shahrzad Towfighian

Abstract We introduce a capacitive MEMS filter that uses electrostatic levitation for actuation and sensing. The advantage of this electrode configuration is that it does not suffer from the pull-in instability and therefore tremendously high voltages can be applied to this system. A large sensing voltage will produce a large output signal, which boosts the signal to noise ratio. The filter outputs about a 110mV peak-to-peak signal when operated at 175V, and can be boosted to 175mV by increasing the voltage to 250V. Because pull-in is eliminated, voltages much higher than 250V can be applied. An outline of the filter design and operating principle is discussed. A model of the filter is derived and analyzed to show the mechanical response and approximate peak-to-peak signal output. This study shows the feasibility of a capacitive sensor that is based on electrostatic levitation, and outlines the advantages it has over traditional parallel-plate electrode configurations. This design is promising for signal signal processing applications where large strokes are important.


Sign in / Sign up

Export Citation Format

Share Document