Seismic Behavior Test of Recycled RC Frame Column with Different Axial Compression Ratios

2012 ◽  
Vol 517 ◽  
pp. 564-569
Author(s):  
Jin Song Fan ◽  
An Zhou ◽  
Li Hua Chen ◽  
Bing Kang Liu

Recycled concrete is a kind of new construction materials, and now received more and more attention from researchers and engineers, since its application in engineering projects can well cater to the increasing requirements of development for economic and environment-friendly society. Based on the pseudo static test of five recycled reinforcement concrete frame columns with different experimental axial compression ratios from 0.3 to 0.65, their failure modes, failure mechanism, hysteretic behavior, skeleton curves, bearing capacity, rigidity, ductility and energy dissipation capacity were discussed. Some possible influence factors and disciplines were also selected and analyzed. The study indicates that recycled reinforcement concrete frame columns in the case of relative low axial compression ratios usually exhibited similar and steady mechanical properties with common concrete columns. With the increase of axial compression ratio, its ductility and energy dissipation capacity are decreased and destruction forms tended to obvious brittle fracture, though its bearing capacity could slightly rise. The test results and analysis also manifest recycled concrete had expectative application potentials in most case.

2014 ◽  
Vol 501-504 ◽  
pp. 1580-1586
Author(s):  
Jian Yang Xue ◽  
Jian Peng Lin ◽  
Hui Ma

The pseudo-static tests were carried out on seven steel reinforced recycled concrete columns. The main parameters of specimens were recycled aggregate replacement ratio, axial compression ratio and volumetric stirrup ratio. The results indicate that the incorporation of recycled aggregate doesnt reduce the horizontal bearing capacity, ductility and the energy dissipation capacity of specimens and has little effect on seismic performance. The seismic performance of steel reinforced recycled concrete column decreases significantly in the high axial compression ratio. The ductility, horizontal bearing capacity and the energy dissipation capacity of the steel reinforced recycled concrete column increase with a rise in the volumetric stirrup ratio. This study provides a reference on the application of the steel reinforced recycled concrete column.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2716 ◽  
Author(s):  
Shiming Liu ◽  
Xinxin Ding ◽  
Xiaoke Li ◽  
Yongjian Liu ◽  
Shunbo Zhao

This paper studies the effect of high-strength steel fiber reinforced concrete (SFRC) on the axial compression behavior of rectangular-sectional SFRC-filled steel tube columns. The purpose is to improve the integrated bearing capacity of these composite columns. Nine rectangular-sectional SFRC-filled steel tube columns and one normal concrete-filled steel tube column were designed and tested under axial loading to failure. The compressive strength of concrete, the volume fraction of steel fiber, the type of internal longitudinal stiffener and the spacing of circular holes in perfobond rib were considered as the main parameters. The failure modes, axial load-deformation curves, energy dissipation capacity, axial bearing capacity, and ductility index are presented. The results identified that steel fiber delayed the local buckling of steel tube and increased the ductility and energy dissipation capacity of the columns when the volume fraction of steel fiber was not less than 0.8%. The longitudinal internal stiffening ribs and their type changed the failure modes of the local buckling of steel tube, and perfobond ribs increased the ductility and energy dissipation capacity to some degree. The compressive strength of SFRC failed to change the failure modes, but had a significant impact on the energy dissipation capacity, bearing capacity, and ductility. The predictive formulas for the bearing capacity and ductility index of rectangular-sectional SFRC-filled steel tube columns are proposed to be used in engineering practice.


2019 ◽  
Vol 14 (02) ◽  
pp. 2050007
Author(s):  
Xizhi Zhang ◽  
Shengbo Xu ◽  
Shaohua Zhang ◽  
Gaodong Xu

In this study, two types of novel box connections were developed to connect precast concrete (PC) columns and to ensure load transfer integrity. Cyclic loading tests were conducted to investigate the seismic behavior of the PC columns with proposed connections as well as the feasibility and reliability of novel box connections. The failure mode, hysteretic behavior, bearing capacity, ductility, stiffness degradation and energy dissipation were obtained and discussed. The test results indicated that the all PC columns exhibited the ductile flexural failure mode and that the proposed connections could transfer the force effectively. The adoption of novel box connections could improve the deformation capacity and energy dissipation capacity of PC columns. A higher axial compression ratio could enhance the bearing capacity of PC column with proposed connection but would significantly deteriorate the ductility and energy dissipation capacity. Finite element models were developed and the feasibility of the models was verified by the comparison with the test results.


2019 ◽  
Vol 9 (7) ◽  
pp. 1456 ◽  
Author(s):  
Wenwei Yang ◽  
Ruhao Yan ◽  
Yaqi Suo ◽  
Guoqing Zhang ◽  
Bo Huang

Due to the insufficient radial stiffness of the steel tube, the cracking of the weld and the plastic deformation of the string often occur under the cyclic loading of the hollow section pipe joint. In order to avoid such a failure, the overlapped K-joints were strengthened by pouring different concrete into the chords. Furthermore, to explore the detailed effect of filling different concrete in a chord on the hysteretic behavior of the overlapped K-joints, six full-scale specimens were fabricated by two forms, which included the circular chord and braces, the square chord and circular braces, and the low cyclic loading tests, which were carried out. The failure modes, hysteretic curves and skeleton curves of the joints were obtained, and the bearing capacity, ductility and energy dissipation of the joints were evaluated quantitatively. The results showed that plastic failure occurs on the surface of the chord of the joints without filling concrete, while the failure mode of the joints filled with concrete in the chords was the tensile failure of the chords at the weld of the brace toe, and the compressive braces had a certain buckling deformation; The strengthening measures of concrete filled with chord can effectively improve the mechanical properties of the K-joints, the delay of the plastic deformation of the chord, and improve the bearing capacity of the K-joints. Contrarily, the ductility coefficient and the energy dissipation ratio of K-joints decreased with the concrete filled in the chord. The hysteretic behavior of the K-joints with a circular chord and brace was slightly better than that of the K-joints with a square chord and circular brace, and the hysteretic behavior of the K-joints strengthened with fly ash concrete, which was better than that of the K-joints strengthened with ordinary concrete. The results of ANSYS (a large general finite element analysis software developed by ANSYS Company in the United States) analysis agreed well with the experimental results.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6648-6667
Author(s):  
Xiaoli Han ◽  
Jian Dai ◽  
Wei Qian ◽  
Baolong Li ◽  
Yuanjun Jin ◽  
...  

The wooden columns in timber structures of ancient buildings have column foot tenons of various sizes. The main reason for these differences is their use for different roof loads. Six full-scale specimens with different sizes of column foot tenon were designed and manufactured. The tree species used for the specimens was larch. The quasi-static test was conducted on the specimens that were used in timber structures of ancient buildings. The effects of column foot tenon size on the mechanical properties of larch wooden columns were studied. The moment-rotational angle hysteretic curves, moment-rotational angle skeleton curves, ductility, stiffness degradation, energy dissipation capacity, slippages between the wooden column and the plinth, and the damage of the column foot tenons were examined. The test results showed that the column foot tenon played an important role in the mechanical behavior of the wooden column under low-cycle reversed cyclic loading. The rotation of the column foot tenon improved the energy dissipation capacity of the wooden column. As the rotational angle of the column base increased, the column foot tenon had different degrees of damage. Different sizes of column foot tenon had their own advantages and hysteretic behavior.


2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Guofeng Xue ◽  
Wei Bao ◽  
Jin Jiang ◽  
Yongsong Shao

This study proposed a beam-to-column joint equipped with a new type of cast steel connector. The cast steel connector concentrated the primary portion of the deformation and energy dissipation of the joint and was installed with full bolted connections, rendering it a replaceable energy dissipation component and facilitating the rapid repair of the joint after an earthquake. Three full-scale specimens were fabricated and tested to investigate the hysteretic behaviors of the proposed joints under cyclic loadings. The results showed that the proposed cast steel connector exhibited reliable ductility and energy dissipation capacity. The beam-to-column joints with cast steel connectors under appropriate configuration can limit the deformation to the cast steel connector and protect the remaining joint components from plastic deformation. A more detailed finite element analysis was performed to investigate the hysteretic behavior of the joint further. The FEM results illustrated that the thickness of the vertical leg of the cast steel connector can significantly influence the stiffness and bearing capacity of the joint. Meantime, it would improve the hysteretic behavior effectively. The proposed beam-to-column joints with cast steel connectors can achieve the requirement of stiffness and load-bearing capacity and can be widely applicable in practical engineering.


2008 ◽  
Vol 400-402 ◽  
pp. 677-683 ◽  
Author(s):  
Yu Yin Wang ◽  
Yuan Long Yang ◽  
Su Mei Zhang ◽  
Jie Peng Liu

Concrete-filled special-shaped (L-shaped, T-shaped, and cross-shaped, and etc.) steel tube column is a type of member in which concrete is poured into special-shaped steel tube so that steel and concrete support loads together. It improves the seismic behaviors of reinforced concrete special-shaped columns due to the better confining effects provided by the steel tube. A test research on the seismic behaviors of one concrete-filled T-shaped steel tube column with pseudo static method is presented and the load-displacement curve and skeleton curve are provided. Series of steel bar stiffeners were welded onto the steel tube in order to postpone the buckling of steel tube and to enhance confining effects. A numerical analysis program was developed using a fiber-based method. The constitutive model of concrete employed the modified Mander model, and that of steel employed a bi-linear model considering the Bausinger effect. The numerical analysis program was verified by the test results and parametric analysis was carried out, in which the influences of the ratio of axial compression stress to strength, steel tube thickness and concrete strength were mainly discussed. The following conclusions are obtained: with the increase of the ratio of axial compression stress to strength, the bearing capacity of member increases and the energy dissipation capacity improve, while the ductility deteriorates. With the increase of steel tube thickness, the initial rigidity, bearing capacity, ductility and energy dissipation capacity improves simultaneously. With the increase of concrete strength, the bearing capacity increases, the energy dissipation capacity improves, while the ductility deteriorates.


2011 ◽  
Vol 368-373 ◽  
pp. 38-41 ◽  
Author(s):  
Cheng Xiang Xu ◽  
Zan Jun Wu ◽  
Lei Zeng

To understand mechanical characteristics and seismic behaviors of T-shaped concrete-filled steel tubular (CFST) joints, cyclic loading tests were carried out on four 1/2-scale exterior joints of top floor. The study includes joints’ mechanical character, failure mode, hysteretic behavior, ductility, energy dissipation and stiffness degradation under different height of beam and different axial compression ratios. The results indicate that frame joints satisfy the design principle of stronger joints and weaker components. The hysteretic loops are plump, ductility and energy dissipation capacity is better than that of ordinary reinforced concrete joints. Axial compression ratios can influence seismic behaviors of frame joints to some degree.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 310
Author(s):  
Fei Wang ◽  
Kaozhong Zhao ◽  
Jianwei Zhang ◽  
Kai Yan

To study the influence of masonry infill walls on the hysteretic performance of reinforced concrete frames, a cyclic experiment was conducted for three two-story and two-span reinforced concrete frame structures, including one reinforced concrete frame without infill walls and two frames with infill walls. Whether the infill walls were constructed in the frames and the type of infilled material were the main parameters of the test. The major results reveal that: the infill walls clearly changed the mechanical mechanism of the frame structure at the early stage of loading, magnified the stiffness and horizontal bearing capacity of the frame structure, and enhanced the energy dissipation capacity of the frame structure, but reduced the deformation performance of the frame structure. In the later stage of loading, the infill walls would no longer work as one with the frame gradually with the failure of the infill walls, and the above performance of the structure would approach the empty frame structure. Moreover, the initial stiffness, energy dissipation capacity, and horizontal bearing capacity of the frame with infill walls of clay hollow bricks were the highest among the three specimens. But due to the strong diagonal bracing effect, the damage to the top of the columns and beam-column joints was serious, the yield displacement was reduced significantly, and the shear failure of the top of the columns and the joints occurred prematurely, which showed poor performance of deformation and ductility. However, the frame with infill walls of relatively soft aerated lightweight concrete blocks showed better performance of deformation and ductility.


2013 ◽  
Vol 790 ◽  
pp. 247-251
Author(s):  
Li Ting Dong ◽  
Yan Wang

Based on node test and finite element analysis results of four different structural form enhanced nodes,failure modes,hysteretic behavior,bearing capacity,ductility and energy dissipation capacity of nodes are analyzed comprehensively and comparatively for more in-depth exploration about the seismic performance of symmetric enhanced nodes.The results showed that all the symmetric enhanced nodes have full hysteretic curve and energy dissipation capacity. On the whole,The flange-plate reinforced node exhibit better seismic performance.


Sign in / Sign up

Export Citation Format

Share Document