Experimental Study on Flexural Property of Reinforced Concrete Beams with Recycled Aggregate of Construction Waste

2012 ◽  
Vol 517 ◽  
pp. 601-605
Author(s):  
Zhao Hua Du ◽  
Tong Hao ◽  
Li Xin Liu

This paper presents the test results of 6 reinforced concrete beams with recycled aggregates of construction waste under flexure, the beams were made of two strength grade concrete of and with different recycled aggregate replacement rate. The results indicate: the ultimate bearing capacity of recycled concrete beams with natural aggregate concrete beams are almost the same, and can meet the requirements of chinese code; The cracking resistance of the reinforced recycled concrete beams is slightly less than that of the beams with natural aggregates, the influence of recycled aggregate replacement rate to cracking resistance is not obvious. Recycled concrete beam crack load the calculated value is greater than the measured value, should carry out the theoretical value adjustment. Reinforced concrete beams is one of concrete structures, its the most common and most important component, Study of flexural property of reinforced concrete for recycled concrete structure component in the popularization and application to have the important significance [. This paper presents the test results of 6 reinforced concrete beams with recycled aggregates of construction waste under flexure, the beams were made of two strength grade concrete of C30 and C40 and with different recycled aggregate replacement rate of 0%, 50% and 70%. These results may be as a reference for the application of the concrete with recycled aggregates of construction waste in engineering [2,3,.

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Aqeel H. Chkheiwer ◽  
Mazin A. Ahmed ◽  
Zahir M. N. Hassan

This study shows the torsional conduct of aggregate streaming beams of reinforced concrete recycling. Pure torsion was perceived for 15 reinforced concrete beams containing recycled concrete aggregates. The beams were grouped into five lengths and cross-sectional groups. The study’s principal parameters were the various percentages of longitudinal steel reinforcement and the proportions of recycled aggregates. The beams were purely twisted until failure and investigated for torsional and crack behaviour. The findings show that the beams with maximum steel enhancement and standard aggregate exhibited maximum cracking power and ultimate torsional strength. Recycled aggregates increased the presence of splitting and the ultimate strength, and the effects of steel strengthening in recycled beams were apparent. In a second analysis, the whole torsional reaction of the beams was analytically predicted. A soft truss model was used and matched with test results for standard beams. A strong compromise was generally reached.


2021 ◽  
pp. 136943322110262
Author(s):  
Haiyan Zhang ◽  
Keyue Wan ◽  
Bo Wu ◽  
Zhonghao Hu

Geopolymer recycled aggregate concrete (GRAC) is a new green construction material, which uses geopolymer as the binder and recycled concrete as aggregates. To compare the flexural performance of GRAC and ordinary recycled aggregate concrete (RAC) beams, static loading tests were conducted on seven GRAC beams and three RAC beams. The effects of the replacement ratio of recycled aggregates (RAs), the replacement patterns, and the reinforcement ratio on the flexural behavior of GRAC beams are evaluated. The test data show that the replacement ratio has no significant effect on the cracking pattern, failure mode, or bending capacity of GRAC beams, but the replacement pattern does have an effect. Under a given replacement ratio, replacing only the larger fraction of natural aggregates (NA) with RA improves the concrete strength and crack resistance of both RAC and GRAC beams, compared to that using same replacement percentage for all fractions. Due to the lower elastic modulus and strength of GRAC prepared in this study, the GRAC beams have lower height of neutral axis and greater deflection than RAC beams at the same load level and possess slightly lower cracking load, bending capacity, and ductility. The bending capacity of GRAC beams can be predicted by the formulas proposed for ordinary reinforced concrete beams in the Chinese code GB50010-2010, ACI 318-11, or BS EN 1992-1-1:2004 codes, but the safety margin is generally lower than that of ordinary reinforced concrete beams.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 186 ◽  
Author(s):  
Barbara Sadowska-Buraczewska ◽  
Danuta Barnat-Hunek ◽  
Małgorzata Szafraniec

The use of recycled concrete aggregates (RCA) in high performance concrete (HPC) was analyzed. The paper presents the experimental studies of model reinforced concrete beams with a rectangular section using high-performance recycled aggregates. Two variable contents of recycled aggregate concrete were used in this study: 50% and 100%. The experimental analyses conducted as immediate studies concerned the following issues: short time loads-deflection, load-carrying capacity of beams, deformation of concrete, cracks, and long-term loads-deflection. The comparative analysis involves the behavior of beams made of high performance concrete-high strength concrete (HPC-HSC) recycled aggregates with model control elements made of regular concrete based on natural aggregates. The deflection values for the recycled aggregate beams were 20% higher than in the case of the control beams made of HPC-HSC exclusively. Replacement of aggregate with recycled concrete aggregate resulted in a large decrease in the value of these two parameters, i.e., compression strength by about 42% and modulus of elasticity by about 33%.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2010 ◽  
Vol 37 (8) ◽  
pp. 1045-1056 ◽  
Author(s):  
Christopher Suffern ◽  
Ahmed El-Sayed ◽  
Khaled Soudki

This paper reports experimental data on the structural performance of disturbed regions in reinforced concrete beams with corrosion damage to the embedded steel stirrups. A total of 15 reinforced concrete beams were constructed and tested. The test beams were 350 mm deep, 125 mm wide, and 1850 mm long. The beams were tested in three-point bending under a simply supported span of 1500 mm. Nine beams had the embedded stirrups subjected to accelerated corrosion. The test variables were the corrosion damage level and the shear span-to-depth ratio. The test results indicated that the corroded beams exhibited reduced shear strength in comparison to the uncorroded control specimens. The shear strength reduction was up to 53%. Furthermore, the reduction in shear strength due to the corrosion was found to be greater at smaller shear span-to-depth ratios.


2011 ◽  
Vol 255-260 ◽  
pp. 504-508
Author(s):  
Li Song ◽  
Zhi Wu Yu

The behavior of materials under repeated loading has been examined, but extended studies are more and more needed especially for damaged reinforced structures such as bridges, where high-cycle fatigue phenomena and corrosion can be significant. In the present paper, a theoretical model based on fatigue performance of materials and stress analysis for cross-section is proposed in order to analyze the fatigue damage of corroded reinforced concrete beams under repeated loads. Further, fatigue life is predicted by applying this method, and the method is evaluated by test results.


Sign in / Sign up

Export Citation Format

Share Document