Influence of Material Composition on Ductile Machining of Tungsten Carbide in Elliptical Vibration Cutting

2012 ◽  
Vol 523-524 ◽  
pp. 113-118 ◽  
Author(s):  
Jian Guo Zhang ◽  
Norikazu Suzuki ◽  
Takashi Kato ◽  
Rei Hino ◽  
Eiji Shamoto

Tungsten carbide is a crucial material for glass molding in optical industry. The present study investigated a feasibility of ductile machining of sintered tungsten carbide for glass molding by applying ultrasonic elliptical vibration cutting technology with single crystal diamond tool. Grain size and binder material of sintered tungsten carbide have an influence on hardness and/or toughness of the material. Binder material also has a chemical affinity to diamond. In order to examine the influence of material composition on ductile machining of tungsten carbide, a series of grooving and planing experiments were conducted to several different tungsten carbide workpieces with the different binder phase and the different grain size. The experimental results indicated that micro grooving in a ductile mode can be attained successfully by applying ultrasonic elliptical vibration cutting, while finished surface deteriorates with brittle fractures in ordinary cutting. It was also clarified that grain size and binder material have significant influence on the deteriorations in the surface quality, the tool shape and the cutting forces.

2009 ◽  
Vol 69-70 ◽  
pp. 133-137 ◽  
Author(s):  
Eiji Shamoto ◽  
Norikazu Suzuki

Precision machining, named ‘elliptical vibration cutting’, and its application to ultraprecision / micro machining of some hard / brittle materials are introduced in the present paper. The elliptical vibration cutting has a superior cutting performance in terms of low cutting force, low cutting energy, low heat generation, long tool life for steels, sintered tungsten alloy, etc., and large critical depth of cut for ductile machining of brittle materials such as glasses and single crystal calcium fluoride, etc. Based on these basic advantages, practical ultraprecision / micro machining of the hard / brittle materials is successfully realized by employing the ultrasonic elliptical vibration tools, which have been developed for ultraprecision machining.


Author(s):  
Sen Yin ◽  
Zhigang Dong ◽  
Yan Bao ◽  
Renke Kang ◽  
Wenhao Du ◽  
...  

Abstract Ultrasonic elliptical vibration cutting (UEVC) technique, as an advanced cutting method, has been successfully applied to machine difficult-to-cut materials for the last decade. In this study, the mechanism of the elliptical vibration locus caused by the “asymmetric structure” of the horn was analyzed theoretically firstly, and the corresponding relationship between the degree of asymmetry and the elliptical vibration locus was determined based on finite element method (FEM). Then an efficient single-excitation UEVC device with “asymmetric structure” was developed and optimized. The resonant frequency of the device was 40.8 kHz, and the amplitude reached 12.4 µm, which effectively broke the limitation of cutting speed in UEVC. Finally, the UEVC device's performance was tested, and the advantages in improving the tungsten alloy surface quality and reducing diamond cutting tool wear validated the technical capability and principle of the proposed device.


Sign in / Sign up

Export Citation Format

Share Document