Study of Particle Distribution in Al-SiC Particulate Composite by Random Motion of Mould

2013 ◽  
Vol 545 ◽  
pp. 188-192
Author(s):  
Payodhar Padhi ◽  
Sachikanta Kar

Synthesis of Al metal matrix composites (MMCs) with ceramic particulate reinforcements through casting route is associated with the problem of non-uniform distribution of particulate. The problem of non-uniform distribution is more for the case of larger particulate volume fraction. In the present study a novel method has been tried to overcome this. It involves random movement of mold containing liquid aluminium and ceramic particulates ieSiC. In the present studythe spherical mold containing molten aluminium and SiC particulates of size 50-100µm is allowed to rotate in a cylindrical drum to impart a random rotation as well translation Before the design of experiment the process simulation has already been done. Accordingly the process has been fabricated. At present the process is a crude one. Preliminary experiments show that the distributions of particles obtained by this technique are better as compared to that of stir cast composites with similar volume fraction of reinforcement. However, the result obtained by the novel technique varied as proper control over the random motion of the mold was not possible. Although uniform microstructure could be obtained in most of the experiment in some cases and certain zones the microstructure showed a non uniform distribution of particles. The temperature of mold before it is subjected to random movement is strongly influenced the particle distribution.

2007 ◽  
Vol 561-565 ◽  
pp. 945-948 ◽  
Author(s):  
Hong Yan ◽  
Ming Fu Fu ◽  
Fa Yun Zhang ◽  
Guo Xiang Chen

The microstructural structures of SiCp/AZ61magnesium matrix composite were studied in three different casting processes, and their hardness was measured. The results indicated that SiCp/AZ61 composites fabricated in stirring melt casting process, compared to those in fully liquid stirring casting process and in semi-solid stirring casting process, possessed fairly uniform distribution of SiC particulates and few porosity rate. It was an ideal metal matrix composites fabricated process. The Vickers hardness of non-reinforcement AZ61 magnesium alloy is higher than that of semi-solid billet, and the Vickers hardness of SiCp/AZ61 composite is obviously higher than that of the matrix. In the meantime, the Vickers hardness of SiCp/AZ61 composite can be continuously enhanced with an increasing of volume fraction of SiC particles.


Author(s):  
Preetkanwal Singh Bains ◽  
H. S. Payal ◽  
Sarabjeet Singh Sidhu

The present study investigates the thermal conductivity and coefficient of thermal expansion of bimodal SiCp reinforced Aluminum matrix composites formed via powder metallurgy method. The after-effects of proportion of particulate reinforcement as size distribution and sintering parameters on the thermal properties have been explored. The Box-Behnken design for response surface methodology was adopted to recognize the significance of chosen variables on the thermal conductivity and coefficient of thermal expansion of the composite. It is witnessed that the thermal conductivity and coefficient of thermal expansion enhanced due to increase in fine SiC particulates volume fraction. It has been exhibited that the fine SiC particulates (37μm) doped Al-matrix occupied interstitial positions and developed continuous SiC-matrix network. SEMs were conducted to evaluate the microstructure architecture for MMCs.


2007 ◽  
Vol 345-346 ◽  
pp. 113-116
Author(s):  
Jonathon Mak ◽  
Richard Wuhrer ◽  
Norman Booth ◽  
Paul Fanos ◽  
Greg Heness ◽  
...  

Equal channel angular extrusion (ECAE) was employed in an attempt to develop nanostructural metal matrix composites with homogenized distribution of reinforcing particles. Zn- Al metal matrix composites reinforced with 5 μm SiC particulates were produced by casting method. A non-uniform distribution of the reinforcing particles was evident in the metal matrix. With repetitive shear deformation imposed via the ECAE process, substantial structural improvement was achieved and the reinforcing particulates were de-clustered into a finely dispersed distribution throughout the metal matrix. The homogeneity of the particle distribution was studied by the Quadrat method and the skew factors were determined. It was found that the skew factors were substantially reduced after 8 extrusion passes, showing the homogeneity of the particle distribution was greatly improved in the composites.


2000 ◽  
Author(s):  
William D. Armstrong

Abstract A new theory is presented of the nonlinear multi-axial magneto-elastic behavior of magnetostrictive particle actuated composite materials. The analysis assumes a uniform external magnetic field is operating on a large number of well distributed, crystallographically and shape parallel ellipsoidal magnetostrictive particles encased in an elastic, nonmagnetic composite matrix. Comparisons between experimental and model magnetostriction results show that the model is able to provide a quantitatively correct dependence on particulate volume fraction and longitudinal stress and quantitatively accurate magnetostriction curves for both homogenous Terfenol-D rod and magnetically ordered Terfenol-D particulate actuated epoxy matrix composites over experimentally applied field ranges.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


Sign in / Sign up

Export Citation Format

Share Document