Modal Analysis of the Cylinder Mechanism Based on ANSYS Workbench

2013 ◽  
Vol 561 ◽  
pp. 496-500
Author(s):  
De Gong Chang ◽  
Hong Yun Dou ◽  
Fu Qin Yang ◽  
Rong Zong

According to the working principle and structural characteristics of cylinder mechanism, the simplified model is built by the Pro/E software. Then we carry on the modal analysis for cylinder mechanism combined with ANSYS Workbench [1], and obtain the natural frequency and mode shapes of all steps. It provides the basis for optimization design and safety evaluation of cylinder mechanism. Finally, we study the influence of bearing stiffness on the critical speed, which provides the basis for the research of high-speed cylinder.

2012 ◽  
Vol 184-185 ◽  
pp. 356-359
Author(s):  
Jiang Miao Yi ◽  
Dong Qiang Gao ◽  
Fei Zhang ◽  
Huan Lin

The finite element model of worktable system is created and modal analysis is made with ANSYS Workbench by taking DVG850 high-speed vertical machining center worktable system for example. We make modal analysis of single-screw strength general reinforcement worktable system and get the natural frequency and the vibration mode.Then in order to improve the system's natural frequency, the scheme of dual-screw worktable system is put forward. Also natural frequency and vibration mode is got. Finally, it is proved that the performance of dual-screw worktable system is significantly better than the single-screw one. This provides a reliable reference for further study on dynamic analysis of worktable system.


2012 ◽  
Vol 490-495 ◽  
pp. 3023-3026
Author(s):  
Shao Zhong Jiang

The article aims at the cylinder head used in a high speed and higher-power diesel engine. In order to obtain the vibration characteristics and vibration frequency distributions. By means of modal analysis technology and finite element method (FEM), structural characteristics of the cylinder head using modal analysis is investigated. Firstly, a physical model of the cylinder head is built. Through the comparison of all the modal analysis results with different meshing densities, a tetrahedron ten-node element with length of 30mm is selected. Then finite element analysis of the model is taken by FEM software. The cylinder head’s modal parameters namely its natural frequency are calculated and its mode shapes are identified. The results can provide basis for the engine’s dynamic analysis and control of the diesel engine’s noise


2013 ◽  
Vol 486 ◽  
pp. 36-41 ◽  
Author(s):  
Róbert Huňady ◽  
František Trebuňa ◽  
Martin Hagara ◽  
Martin Schrötter

Experimental modal analysis is a relatively young part of dynamics, which deals with the vibration modes identification of machines or their parts. Its development has started since the beginning of the eighties, when the computers hardware equipment has improved and the fast Fourier transform (FFT) could be used for the results determination. Nowadays it provides an uncountable set of vibration analysis possibilities starting with conventional contact transducers of acceleration and ending with modern noncontact optical methods. In this contribution we mention the use of high-speed digital image correlation by experimental determination of mode shapes and modal frequencies. The aim of our work is to create a program application called Modan 3D enabling the performing of experimental modal analysis and operational modal analysis. In this paper the experimental modal analysis of a thin steel sample performed with Q-450 Dantec Dynamics is described. In Modan 3D the experiment data were processed and the vibration modes were determined. The reached results were verified by PULSE modulus specialized for mechanical vibration analysis.


1971 ◽  
Vol 8 (03) ◽  
pp. 327-333
Author(s):  
R. H. Salzman

This paper presents a semi-graphical approach for finding the first critical speed of a stepped shaft with finite bearing stiffness. The method is particularly applicable to high-speed turbine rotors with journal bearings. Using Rayleigh's Method and the exact solution for whirling of a uniform shaft with variable support stiffness, estimates of the lowest critical speed are easily obtained which are useful in the design stage. First critical speeds determined by this method show good agreement with values computed by the Prohl Method for the normal range of bearing stiffness. A criterion is also established for determining if the criticals are "bearing critical speeds" or "bending critical speeds," which is of importance in design. Discusser E. G. Baker


2014 ◽  
Vol 672-674 ◽  
pp. 509-517
Author(s):  
Chang Liang Tang ◽  
Dong Jiang Han ◽  
Jin Fu Yang ◽  
Xing Jian Dai

The flywheel energy storage technology is a new type of conversion and storage for electric energy, and it is also a research hotspot of energy field in the world. There are a large number of studies on dynamic characteristics of energy storage flywheel in recent years. The flexible support with a single point has small load-carrying ability but very low friction loss, which is appropriate to be used in small flywheel system. By using a small stiffness pivot-jewel bearing and an oil damper as the lower support of the flywheel, a high-speed flywheel shafting with a single point flexible support was built. The dynamic model of the shafting was obtained by means of the Lagrangian equation. Based on the same energy dissipation of oil damper and flywheel, the optimal equivalent damping of flywheel was determined. The optimization criteria for dynamic state and parameters between oil damper and shafting were also presented. The lower damper’s effects on the mode shapes, modal damping ratios and forced vibration were discussed.


2013 ◽  
Vol 385-386 ◽  
pp. 192-195
Author(s):  
Dong Sheng Zhang ◽  
Jian Jun Zhang

As the less-teeth gear has the less-teeth, the bigger helix angle and the more contact ratio etc. The research of dynamic meshing characteristics makes focus, and modal analysis is the basis of dynamic analysis. In order to get the modal analysis characteristics: firstly the parametric solid modeling is realized through the software of MATLAB and PRO/E; secondly multistage inherent frequencies and mode shapes are achieved by the finite element software of ANSYS Workbench.


2011 ◽  
Vol 121-126 ◽  
pp. 1023-1027
Author(s):  
Chun Zhang ◽  
Zhi Yuan Li

Optimization design was a technology that searched and determined the optimal design. Parametric model of headstock was established in Pro/E, and the parametric model was imported into the ANSYS Workbench. Then multi-objective optimization design was carried out in DesignXplorer module based on test technology, response surface that the combinations of design variables aimed at the objective function was obtained, the situation which design variables changes impacted on performance parameters from the response surface was viewed, a relatively ideal optimal design result was chosen. The mass of improved headstock was reduced, under the condition that performance in all aspects was not diminished.


2014 ◽  
Vol 556-562 ◽  
pp. 1059-1064
Author(s):  
Zhang Li ◽  
Xi Zhe Zang ◽  
Lai Chun Suo ◽  
Yan He Zhu ◽  
Jie Zhao

The heavy-load manipulator arm, an important part of the remote handling maintenance system of the large-scale multi-purpose deployer, plays a key role of the entire system. Its modeling and assembly was finished by Pro/E. Then use the ANSYS Workbench, finite element analysis software, to complete its static analysis and modal analysis through building a seamless connection between Pro/E and ANSYS Workbench. As a result, the overall deformation and static stiffness values of the manipulator arm were obtained through static analysis, and the former six-order natural frequency values and mode shapes were obtained through modal analysis. Finally, scheme of structure modification and new control method were presented by analyzing and comparing the results.


2019 ◽  
Vol 36 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Jingjing Huang ◽  
Longxi Zheng ◽  
Chris K Mechefske ◽  
Bingbing Han

Abstract Based on rotor dynamics theory, a two-disk flexible rotor system representing an aero-engine with freely supported structure was established with commercial software ANSYS. The physical model of the two-disk rotor system was then integrated to the multidisciplinary design optimization software ISIGHT and the maximum vibration amplitudes experienced by the two disks when crossing the first critical speed were optimized using a multi-island genetic algorithm (MIGA). The optimization objective was to minimize the vibration amplitudes of the two disks when crossing the first critical speed. The position of disk 1 was selected as the optimization variable. The optimum position of disk 1 was obtained at the specified constraint that the variation of the first critical speed could not exceed the range of ±10 %. In order to validate the performance of the optimization design, the proof-of-transient experiments were conducted based on a high-speed flexible two-disk rotor system. Experimental results indicated that the maximum vibration amplitude of disk 1 when crossing the first critical speed declined by 60.9 % and the maximum vibration amplitude of disk 2 fell by 63.48 % after optimization. The optimization method found the optimum rotor positions of the flexible rotor system which resulted in minimum vibration amplitudes.


Author(s):  
T. N. Shiau ◽  
C. H. Kang ◽  
D. S. Liu ◽  
E. K. Lee ◽  
W. C. Hsu

This paper presents an efficient enhanced genetic algorithm to minimize the shaft weight, the unbalance response and the response due to the transmission error simultaneously. The minimization plays an important role in designing the geared rotor system under critical speed constraints. In the process of optimization, the design variables consist of shaft inner radii, bearing stiffness and the gear mesh stiffness. The enhanced genetic algorithm of optimization comprises the Hybrid Genetic Algorithm (HGA) and the Interval Genetic Algorithm (IGA). The HGA deals with this optimal design problem and the IGA accomplishes the interval optimization design. The results show that the presented enhanced genetic algorithm can not only effectively reduce the shaft weight and the transmission error response, but also precisely determine the interval ranges of design variables with feasible corresponding objective error.


Sign in / Sign up

Export Citation Format

Share Document