Modification on TiO2-a Photosensitive Material

2013 ◽  
Vol 579-580 ◽  
pp. 148-152
Author(s):  
Miao Sun ◽  
Yong Hu ◽  
Hua Guo

TiO2, as photosensitive materials, has attracted much attention owing to its potential application in the solution of environmental pollution during the past decades. Four doped TiO2systems were constructed and studied by using the first principle based Density Functional Theory .The results indicate that P-doped and N-doped TiO2all have better light absorption in the visible light area than pristine TiO2although the band gap of N-doped system reduced less. However, the band gap of F-doped and Cl-doped TiO2increase a little, which causing the absorption to decrease. We suggest from the results that the P atom and N atom are valuable in the modification of TiO2.

2020 ◽  
Vol 833 ◽  
pp. 157-161
Author(s):  
Mauludi Ariesto Pamungkas ◽  
Husain ◽  
Achmad Kafi Shobirin ◽  
Tri Sugiono ◽  
Masruroh Masruroh

Germanene, which has the same structure as graphene, is an exciting novel 2D functionalized material that controls its band gap using functionalization. The effects of the Ga atom and hydrogen atoms on the structure of Ga-doped H-passivated germanene were investigated with a density functional theory (DFT) calculation. H-passivated germanene has a direct gap of 2.10 eV. Opening the band gap in the H-passivated germanene is due to transition from sp2 to sp3 orbital. Adsorption of the Ga adatom on H-site decrease the band gap to 1.38 eV. No interaction between Ga atoms and Hydrogen atoms was observed. Hence, their effects on the band structure of hydrogenated graphene were independent of each other. Our results suggest that hydrogen passivation combined with adsorption of the Ga adatoms could effectively control the band gap of germanene.


2014 ◽  
Vol 28 (18) ◽  
pp. 1450112 ◽  
Author(s):  
Matiullah Khan ◽  
Wenbin Cao ◽  
Jing Li ◽  
Muhammad Iqbal Zaman ◽  
Abdul Manan

Efficient absorption of light in visible range and enhance separation of photoexcited electron-hole pairs (EHPs) are crucial for improving the photoactivity of metal nonmetal codoped TiO 2. By using density functional theory (DFT) calculations, an effective metal ( Ag ) and nonmetal ( N ) codoping approach is described to modify the photoelectrochemical properties of titanium dioxide ( TiO 2). Nitrogen (N) doping introduces isolated N -2p states above the valence band maximum (VBM) which acts as an electron trap to promote EHP recombination. For Ag -doped TiO 2, Ag -4d states are introduced above the VBM which leads to the band gap narrowing. Silver (Ag) and nitrogen codoped TiO 2 possess stable configuration, narrowed band gap and best visible light absorption. Defect pair binding energy calculation shows that individual dopants, located at a distance of 8.951 Å bind each other, which indicates that the defect pair is stable compared to the isolated impurities in the host lattice. Ag and N codoped TiO 2 shows better visible light absorption as compared to other doped models due to the reduced band gap. N doping reduces the band gap of TiO 2 while Ag doping enhances the EHPs separation, so their combined presence in a sample would improve the photocatalytic activity due to their synergistic codoping effect. Our calculations provide reasonable explanation for the experimental findings.


2015 ◽  
Vol 242 ◽  
pp. 434-439 ◽  
Author(s):  
Vasilii E. Gusakov

Within the framework of the density functional theory, the method was developed to calculate the band gap of semiconductors. We have evaluated the band gap for a number of monoatomic and diatomic semiconductors (Sn, Ge, Si, SiC, GaN, C, BN, AlN). The method gives the band gap of almost experimental accuracy. An important point is the fact that the developed method can be used to calculate both localized states (energy deep levels of defects in crystal), and electronic properties of nanostructures.


2016 ◽  
Vol 4 (29) ◽  
pp. 11498-11506 ◽  
Author(s):  
Taehun Lee ◽  
Yonghyuk Lee ◽  
Woosun Jang ◽  
Aloysius Soon

Using first-principles density-functional theory calculations, we investigate the advantage of using h-WO3 (and its surfaces) over the larger band gap γ-WO3 phase for the anode in water splitting. We demonstrate that h-WO3 is a good alternative anode material for optimal water splitting efficiencies.


2015 ◽  
Vol 29 (32) ◽  
pp. 1550201 ◽  
Author(s):  
Bao Chen ◽  
Santao Qi ◽  
Hongquan Song ◽  
Chuanhui Zhang ◽  
Jiang Shen

In this paper, the structural, elastic, electronic and thermodynamic properties of [Formula: see text] and [Formula: see text] intermetallic compound are investigated using pseudopotential method based on density functional theory (DFT) under pressure. In this work, the calculated lattice constant and bulk modulus are in accordance with experimental values at zero temperature and zero pressure. The bulk modulus [Formula: see text], shear modulus [Formula: see text] and Young’s modulus [Formula: see text] for [Formula: see text] and [Formula: see text] increase with the increasing external pressure. It is noted that [Formula: see text] of investigated compound has the largest [Formula: see text], [Formula: see text] and [Formula: see text]. The results of [Formula: see text] and [Formula: see text] have the same change trend, but [Formula: see text] presents an irregular change for [Formula: see text] and [Formula: see text]. The density of states for [Formula: see text] and [Formula: see text] are investigated at 0, 30 and 50 GPa. In addition, the thermodynamic properties as a function of temperature at different pressure are also studied.


2018 ◽  
Vol 7 (6) ◽  
pp. 469-473 ◽  
Author(s):  
Wei Li ◽  
Yun Zhao ◽  
Teng Wang

AbstractAbsorption of Pb ion on the (n, 0) carbon nanotube (CNT) (n=4, 5, 6) surface, pure and defected with single vacancy, is investigated based on density functional theory. Pristine (n, 0) CNTs can produce a certain degree of chemical adsorption of Pb ion. While a single vacancy is introduced, the adsorption ability of CNTs for Pb ion increases greatly, and the band gap changes significantly before and after adsorption. SV-(6, 0) CNTs have the strongest adsorption ability, and SV-(5, 0) CNTs are the potential material for the Pb ion detection sensor. It is expected that these could be helpful to the design of Pb filters and sensors.


2016 ◽  
Vol 43 ◽  
pp. 23-28 ◽  
Author(s):  
Chun Ping Li ◽  
Ge Gao ◽  
Xin Chen

First-principle ultrasoft pseudo potential approach of the plane wave based on density functional theory (DFT) has been used for studying the electronic characterization and optical properties of ZnO and Fe, Co doped ZnO. The results show that the doping impurities change the lattice parameters a little, but bring more changes in the electronic structures. The band gaps are broadened by doping, and the Fermi level accesses to the conduction band which will lead the system to show the character of metallic properties. The dielectric function and absorption peaks are identified and the changes compared to pure ZnO are analyzed in detail.


2020 ◽  
Author(s):  
Hugo Souza ◽  
Antonio Chaves Neto ◽  
Francisco Sousa ◽  
Rodrigo Amorim ◽  
Alexandre Reily Rocha ◽  
...  

In this work, we investigate the effects of building block separation of Phenylalanine-Tryptophan nanotube induced by the confined water molecules on the electronic properties using density-functional theory based tight-binding method. <div><br></div>


Sign in / Sign up

Export Citation Format

Share Document