Characterization of Impact Abrasive Wear Produced by Different Rocks

2014 ◽  
Vol 604 ◽  
pp. 47-50 ◽  
Author(s):  
Marcela Petrica ◽  
Thomas Peinsitt ◽  
Ewald Badisch

In industry, core components such as crushers, miner feeder devices and impact stone breakers are exposed to heavy wear which involves mechanisms such abrasive wear and / or impact abrasion. The purpose of this work is to identify complex wear mechanisms that occur in such conditions and to correlate them with the properties of typical abrasives found in mining environments.

Wear ◽  
1996 ◽  
Vol 200 (1-2) ◽  
pp. 122-136 ◽  
Author(s):  
M.Q. Zhang ◽  
K. Friedrich ◽  
K. Batzar ◽  
P. Thomas

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yongshui Shen ◽  
Tongjin Sun ◽  
Tao Zhu ◽  
Ying Xiong

Abstract A laser shock peening (LSP) layer, a micro-arc oxidation (MAO) coating, and an LSP/MAO composite coating were fabricated on the surface of AZ80 magnesium alloy by laser shock and micro-arc oxidation process. The ball-disc grinding method was used to perform wear test on the three treated specimens in simulated body fluids (SBF) with pH values of 4, 7.4 and 9. The morphology and element content of worn surface were investigated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results indicated that the wear rates of the three treated specimens in three pH environment in numerical order were pH 4 > pH 7.4 > pH 9, respectively. The wear rates of the three treated specimens in the same pH environment were arranged in the order of MAO > LSP > LSP/MAO, respectively. The main wear mechanisms of the LSP specimen in pH 4 environment were fatigue wear and corrosion wear, while it were corrosion wear and adhesive wear in pH 7.4 and pH 9 environments. Abrasive wear, fatigue wear and corrosion wear were the main wear mechanisms of the MAO specimen in pH 4 environment, while abrasive wear, adhesive wear and corrosion wear were the main wear mechanisms of that in pH 7.4 and pH 9 environments. The corrosion wear resistance of the LSP/MAO specimen in SBF solution with three pH values was improved due to the synergism of LSP fine crystal layer and MAO coating.


2020 ◽  
Vol 993 ◽  
pp. 836-843
Author(s):  
Ke Guo ◽  
Zhi Qiang Zhang ◽  
Zhong Zheng Pei ◽  
Jie Xu ◽  
Yi Fan Feng

Here we developed a hot-pressed molded resin-based brake pad material reinforced by a nano sodium titanate whisker in comparison with nano potassium titanate whisker. The effect of the whiskers on the tribology behavior was investigated. Though nano sodium titanate whisker reinforced brake material showed higher porosity (+12.29% averagely) and lower hardness (-25.8% averagely) caused by the impurities, it exhibited improved ability in stabilizing the friction coefficient and enhancing 25.5%, 31.1%, 25.9% higher wear resistance, when the volume contents of whisker are 7.5%, 15% and 22.5%, respectively, compared to the nano potassium titanate whisker reinforced brake material. The wear mechanisms of the nano sodium titanate whisker reinforced brake materials were determined as embedded debris, delaminated crater, moderate layers transfer, uniform furrows, primary plateaus and secondary plateaus in similar size, indicating a main wear form of abrasive wear instead of adhesive wear.


2019 ◽  
Vol 799 ◽  
pp. 83-88
Author(s):  
Ewald Badisch ◽  
Markus Varga ◽  
Stefan J. Eder

Abrasive wear limits the lifetime of key components and wear parts used in various applications. Damage is caused by indentation of harder particles into the wearing materials and subsequent relative motion resulting in ploughing, cutting, and fracture phenomena. The wear mechanisms depend mainly on the applied materials, loading conditions, and abrasives present in the tribosystem, hence material choice is often a difficult task and requires careful evaluation. For this, a variety of laboratory abrasion tests are available of which the scratch test is discussed in this work as the most fundamental abrasive interaction. For further insight into the acting wear mechanisms and microstructural effects, large-scale molecular dynamics simulations were carried out as well as meso-/macroscopic scratch simulations with the mesh-free Material Point Method. The prediction of abrasive wear is of high relevance for industrial applications. Up to now, no general one-to-one match between field application and lab system is known. Here, a simulation-based transfer of experimentally determined wear rates via a lab-2-field approach enables the prediction of wear rates in real applications.


2013 ◽  
Vol 195 (21) ◽  
pp. 4782-4792 ◽  
Author(s):  
X. Gao ◽  
S. Mukherjee ◽  
P. M. Matthews ◽  
L. A. Hammad ◽  
D. B. Kearns ◽  
...  

2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


Wear ◽  
2018 ◽  
Vol 404-405 ◽  
pp. 82-91 ◽  
Author(s):  
L. Major ◽  
R. Major ◽  
M. Kot ◽  
J.M. Lackner ◽  
B. Major

1987 ◽  
Vol 90 ◽  
pp. 343-347 ◽  
Author(s):  
J.-P. Hirvonen ◽  
J. Koskinen ◽  
A. Anttila ◽  
D. Stone ◽  
C. Paszkiet

Sign in / Sign up

Export Citation Format

Share Document