Histogram Based Bacteria Colony Features Analysis

2014 ◽  
Vol 609-610 ◽  
pp. 1448-1452
Author(s):  
Kun Zhang ◽  
Min Rui Fei

Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. This paper presents a novel approach for adaptive colony segmentation by classifying the detected peaks of intensity histograms of images. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained support vector machine (USVM) has better recognition accuracy than the other state of the art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Kun Zhang ◽  
Minrui Fei ◽  
Xin Li ◽  
Huiyu Zhou

Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing step. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.


2020 ◽  
Vol 5 (2) ◽  
pp. 504
Author(s):  
Matthias Omotayo Oladele ◽  
Temilola Morufat Adepoju ◽  
Olaide ` Abiodun Olatoke ◽  
Oluwaseun Adewale Ojo

Yorùbá language is one of the three main languages that is been spoken in Nigeria. It is a tonal language that carries an accent on the vowel alphabets. There are twenty-five (25) alphabets in Yorùbá language with one of the alphabets a digraph (GB). Due to the difficulty in typing handwritten Yorùbá documents, there is a need to develop a handwritten recognition system that can convert the handwritten texts to digital format. This study discusses the offline Yorùbá handwritten word recognition system (OYHWR) that recognizes Yorùbá uppercase alphabets. Handwritten characters and words were obtained from different writers using the paint application and M708 graphics tablets. The characters were used for training and the words were used for testing. Pre-processing was done on the images and the geometric features of the images were extracted using zoning and gradient-based feature extraction. Geometric features are the different line types that form a particular character such as the vertical, horizontal, and diagonal lines. The geometric features used are the number of horizontal lines, number of vertical lines, number of right diagonal lines, number of left diagonal lines, total length of all horizontal lines, total length of all vertical lines, total length of all right slanting lines, total length of all left-slanting lines and the area of the skeleton. The characters are divided into 9 zones and gradient feature extraction was used to extract the horizontal and vertical components and geometric features in each zone. The words were fed into the support vector machine classifier and the performance was evaluated based on recognition accuracy. Support vector machine is a two-class classifier, hence a multiclass SVM classifier least square support vector machine (LSSVM) was used for word recognition. The one vs one strategy and RBF kernel were used and the recognition accuracy obtained from the tested words ranges between 66.7%, 83.3%, 85.7%, 87.5%, and 100%. The low recognition rate for some of the words could be as a result of the similarity in the extracted features.


Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 199 ◽  
Author(s):  
Lucia Billeci ◽  
Magda Costi ◽  
David Lombardi ◽  
Franco Chiarugi ◽  
Maurizio Varanini

Atrial fibrillation (AF) is the most common cardiac disease and is associated with other cardiac complications. Few attempts have been made for discriminating AF from other arrhythmias and noise. The aim of this study is to present a novel approach for such a classification in short ECG recordings acquired using a smartphone device. The implemented algorithm was tested on the Physionet Computing in Cardiology Challenge 2017 Database and, for the purpose of comparison, on the MIT-BH AF database. After feature extraction, the stepwise linear discriminant analysis for feature selection was used. The Least Square Support Vector Machine classifier was trained and cross-validated on the available dataset of the Challenge 2017. The best performance was obtained with a total of 30 features. The algorithm produced the following performance: F1 Normal rhythm = 0.92; F1 AF rhythm: 0.82; F1 Other rhythm = 0.75; Global F1 = 0.83, obtaining the third best result in the follow-up phase of the Physionet Challenge. On the MIT-BH ADF database the algorithm gave the following performance: F1 Normal rhythm = 0.98; F1 AF rhythm: 0.99; Global F1 = 0.98. Since the algorithm reliably detect AF and other rhythms in smartphone ECG recordings, it could be applied for personal health monitoring systems.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1247
Author(s):  
Mingyang Liu ◽  
Jin Yang ◽  
Wei Zheng

Numerous novel improved support vector machine (SVM) methods are used in leak detection of water pipelines at present. The least square twin K-class support vector machine (LST-KSVC) is a novel simple and fast multi-classification method. However, LST-KSVC has a non-negligible drawback that it assigns the same classification weights to leak samples, including outliers that affect classification, these outliers are often situated away from the main leak samples. To overcome this shortcoming, the maximum entropy (MaxEnt) version of the LST-KSVC is proposed in this paper, called the MLT-KSVC algorithm. In this classification approach, classification weights of leak samples are calculated based on the MaxEnt model. Different sample points are assigned different weights: large weights are assigned to primary leak samples and outliers are assigned small weights, hence the outliers can be ignored in the classification process. Leak recognition experiments prove that the proposed MLT-KSVC algorithm can reduce the impact of outliers on the classification process and avoid the misclassification color block drawback in linear LST-KSVC. MLT-KSVC is more accurate compared with LST-KSVC, TwinSVC, TwinKSVC, and classic Multi-SVM.


Author(s):  
Boyang Li ◽  
◽  
Jinglu Hu ◽  
Kotaro Hirasawa

We propose an improved support vector machine (SVM) classifier by introducing a new offset, for solving the real-world unbalanced classification problem. The new offset is calculated based on the unbalanced support vectors resulting from the unbalanced training data. We developed a weighted harmonic mean (WHM) algorithm to further reduce the effects of noise on offset calculation. We apply the proposed approach to classify real-world data. Results of simulation demonstrate the effectiveness of our proposed approach.


Measurement ◽  
2019 ◽  
Vol 146 ◽  
pp. 24-34 ◽  
Author(s):  
J. Susai Mary ◽  
M.A. Sai Balaji ◽  
A. Krishnakumari ◽  
R.S. Nakandhrakumar ◽  
D. Dinakaran

2013 ◽  
Vol 53 (2) ◽  
pp. 945-958 ◽  
Author(s):  
Amir Fayazi ◽  
Milad Arabloo ◽  
Amin Shokrollahi ◽  
Mohammad Hadi Zargari ◽  
Mohammad Hossein Ghazanfari

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
E. Chatzimichail ◽  
E. Paraskakis ◽  
M. Sitzimi ◽  
A. Rigas

Objectives. In this study a new method for asthma outcome prediction, which is based on Principal Component Analysis and Least Square Support Vector Machine Classifier, is presented. Most of the asthma cases appear during the first years of life. Thus, the early identification of young children being at high risk of developing persistent symptoms of the disease throughout childhood is an important public health priority.Methods. The proposed intelligent system consists of three stages. At the first stage, Principal Component Analysis is used for feature extraction and dimension reduction. At the second stage, the pattern classification is achieved by using Least Square Support Vector Machine Classifier. Finally, at the third stage the performance evaluation of the system is estimated by using classification accuracy and 10-fold cross-validation.Results. The proposed prediction system can be used in asthma outcome prediction with 95.54 % success as shown in the experimental results.Conclusions. This study indicates that the proposed system is a potentially useful decision support tool for predicting asthma outcome and that some risk factors enhance its predictive ability.


Sign in / Sign up

Export Citation Format

Share Document