Third Body Concept and Wear Particle Behavior in Dry Friction Sliding Conditions

2015 ◽  
Vol 640 ◽  
pp. 1-12 ◽  
Author(s):  
Jean Denape

The third body concept is a pragmatic tool for analyzing and understanding the friction and wear of sliding materials. This approach is based on the dominating role played by the wear particles under dry sliding conditions. These particles constitute the major part of what is called the third body. The third body concept was introduced by Maurice Godet in the middle of the 70’s and developed by Yves Berthier since the end of the 80’s who added complementary conceptual tools as the tribological triplet, the accommodation mechanisms and the tribological circuit. The aim of this paper is to give a synthetic view of these concepts, which involves mechanical, material and physicochemical subjects. Concrete examples and case studies from various practical applications are given to illustrate the validity and the efficiency of such a phenomenological approach.

2017 ◽  
Vol 23 (3) ◽  
pp. 420-432 ◽  
Author(s):  
Pavel Krejčí ◽  
Adrien Petrov

The third-body concept is a pragmatic tool used to understand the friction and wear of sliding materials. The wear particles play a crucial role in this approach and constitute the main part of the third-body. This paper aims to introduce a mathematical model for the motion of a third-body interface separating two surfaces in contact. This model is written in accordance with the formalism of hysteresis operators as solution operators of the underlying variational inequalities. The existence result for this dynamical problem is obtained by using a priori estimates established for Faedo–Galerkin approximations, and some more specific techniques such as anisotropic Sobolev embedding theory.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Arman Ahmadi ◽  
Farshid Sadeghi

Abstract In this investigation, a finite element (FE) model was developed to study the third body effects on the fretting wear of Hertzian contacts in the partial slip regime. An FE three-dimensional Hertzian point contact model operating in the presence of spherical third bodies was developed. Both first bodies and third bodies were modeled as elastic–plastic materials. The effect of the third body particles on contact stresses and stick-slip behavior was investigated. The influence of the number of third body particles and material properties including modulus of elasticity, hardening modulus, and yield strength were analyzed. Fretting loops in the presence and absence of wear particles were compared, and the relation between the number of cycles and the hardening process was evaluated. The results indicated that by increasing the number of particles in contact, more load was carried by the wear particles which affect the wear-rate of the material. In addition, due to the high plastic deformation of the debris, the wear particles deformed and took a platelet shape. Local stick-slip behavior over the third body particles was also observed. The results of having wear debris with different material properties than the first bodies indicated that harder wear particles have a higher contact pressure and lower slip at the location of particles which affects the wear-rate.


2007 ◽  
Vol 129 (4) ◽  
pp. 829-835 ◽  
Author(s):  
D. Richard ◽  
I. Iordanoff ◽  
Y. Berthier ◽  
M. Renouf ◽  
N. Fillot

This paper presents an overview of a discrete element method approach to dry friction in the presence of a third body. Three dimensional computer simulations have been carried out to show the influence of the third body properties (and more specifically their adhesion) on friction coefficient and profiles of dissipated power. Simple interaction laws and a cohesive contact are set up to uncouple the key parameters governing the contact rheology. The model is validated through a global energy balance. As it is shown that dynamic friction coefficient can be explained only in terms of local energy dissipation, this work also emphasizes the fact that mechanism effects and third body rheology have important consequences on the energy generation and dissipation field. Therefore, asymmetries can arise and the surface temperature of first bodies can be significantly different even for the same global friction coefficient value. Such investigations highlight the fact that friction coefficient cannot be considered in the same way at the mechanism scale as at the contact scale where the third body plays a non-negligible role, although it has been neglected for years in thermal approaches to study of surfaces in contact.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xuxu Guo ◽  
Rui Tan ◽  
Mingyang Yang ◽  
Xinrong He ◽  
Jia Guo ◽  
...  

Wear particle image analysis is an effective method to detect wear condition of mechanical devices. However, the recognition accuracy and recognition efficiency for online wear particle automatic recognition are always mutual restricted because the online wear particle images have almost no texture information and lack clarity. Especially for confusing fatigue wear particles and sliding wear particles, the online recognition is a challenging task. Based on this requirement, a super-resolution reconstruct technique and partial hierarchical convolutional neural network, SR-PHnet, is proposed to classify wear particles in one step. The structure of this network is composed by three modules, one is super-resolution layer module, the second is convolutional neural network classifier module, and the third is support vector machine (SVM) classifier module. The classification result of the second module is partial input to the third module for precision classification of fatigue and sliding particles. In addition, a new feature of radial edge factor (REF) is put forward to target fatigue and sliding wear particles. The test result shows that the new feature has the capability to distinguish fatigue and sliding particles well and time saving. The comparison experiments of the convolution neural network (CNN) method, support vector machine method (SVM) with and without REF feature, and integrated model of back-propagation (BP) and CNN are produced. The comparison results show that the online recognition speed and online recognition rate of the proposed SR-PHnet model in this paper are both improved markedly, especially for fatigue and sliding wear particles.


2021 ◽  
Author(s):  
Jooho Park ◽  
Minwoo Ahn ◽  
Seungwoo Han ◽  
Wonyoung Lee ◽  
YoungZe Lee

Abstract The tribological performance and friction-induced vibration of Gd0.2-Ce0.8O1.9 (GDC) reinforced nickel oxide (NiO) metal matrix composites prepared via sintering on the tribological performance, as well as friction induced vibration were investigated. Compared to pure NiO, the composites exhibit improved mechanical properties, such as a relatively high dislocation density, hardness and small grain size. The results show that GDC-reinforced NiO nanocomposites feature improved tribological performance and can suppress the occurrence of friction-induced vibration under variable loading conditions. Furthermore, the generated acceleration can be suppressed by wear particles generated during the friction process, acting as the third body at the contact interface. As a result, the addition of GDC reduces the grain size of the composite, increases hardness, and improves tribological properties through the synergetic effect of the solid lubricating action of NiO and the role of the third body of the wear particle.


2007 ◽  
Vol 353-358 ◽  
pp. 801-804 ◽  
Author(s):  
Shi Bo Wang ◽  
Shi Rong Ge

The friction and wear behavior of nylon1010 composites filled with different proportions of ZnOw in reciprocating sliding against GCr15 steel ball under dry friction condition were studied. The worn surface and wear particles were then examined with SEM. The elastic modulus, nano-hardness and ball indentation hardness of composites increased with the content of ZnOw. The coefficients of friction of composites decreased lightly, which changed from 0.36 and 0.26 of nylon matrix to 0.30 and 0.22 of composites at 0.04 m/s and 0.08m/s sliding velocity, respectively. The anti-wear property of composites was improved with large extent. The typical wear mechanism of nylon matrix is adhesion and micro-melting. However, peeling of surface layer appears owing to fatigue for composites. Roll-shaped wear debris were produced for pure nylon, while flake-like debris for nylon composites.


Author(s):  
I. Iordanoff ◽  
D. Richard ◽  
M. Renouf ◽  
Y. Berthier

This paper presents an overview of a Discrete Element Method approach used to study the dry friction (global scale) taking into account local discontinuity with the presence of third body at the contact interface. Three dimensional computer simulations have been carried out to show the influence of the third body properties (and more specifically its adhesion) on the resulting friction coefficient as well as the dissipated power profiles. The physics of the interface is described by a simple cohesive contact law which is set up to uncouple the key parameters governing the contact rheology. The model is validated through a global energy balance. As it is shown that dynamic friction coefficient can be explained in term of local energy dissipation, the work also emphasizes the fact that mechanism effects and third body rheology have important consequences on the energy generation and dissipation field. The friction coefficient cannot be considered the same way at the mechanism scale than at the contact one where the third body plays a non-negligible role despite the fact that it has been neglected for years in thermal approaches of the contact.


Wear ◽  
2007 ◽  
Vol 262 (7-8) ◽  
pp. 949-957 ◽  
Author(s):  
N. Fillot ◽  
I. Iordanoff ◽  
Y. Berthier

Sign in / Sign up

Export Citation Format

Share Document