Influence of Hydrogen Content on Microstructure and Mechanical Properties of Zr1Nb Fuel Cladding after High-Temperature Oxidation

2015 ◽  
Vol 662 ◽  
pp. 35-38
Author(s):  
Martin Negyesi ◽  
Olga Bláhová ◽  
Jaroslav Burda ◽  
Jan Adámek ◽  
Jitka Kabátová ◽  
...  

The aim of this study is to investigate the influence of hydrogen on the microstructure and mechanical properties of Zr1Nb fuel cladding after high-temperature oxidation. As-received or pre-hydrided materials were tested. The influence of different cooling rates was examined as well. The microstructure was observed using of light microscopy. Oxygen distribution was measured using X-ray microanalysis. Local mechanical properties were determined by the microhardness and nanohardness measurements. Ring compression testing (RCT) was employed with the aim to obtain the macroscopic mechanical properties. Fractographic analysis was performed after the RCT. The experimental results confirmed that hydrogen as well as the cooling rate substantially influenced the microstructure and affected both local and macroscopic mechanical properties.

2018 ◽  
Vol 274 ◽  
pp. 9-19
Author(s):  
Guo Tao Zhang ◽  
Yong Zheng ◽  
Yi Jie Zhao ◽  
Wei Zhou ◽  
Jia Jie Zhang ◽  
...  

Ti (C,N)-based cermets with varying WC additions (Ti (C0.6N0.4)-36Ni-12Mo-1C-xWC, x = 0, 3, 6 and 9 wt%) were prepared by conventional powder metallurgy techniques. The microstructure and mechanical properties of all four Ti (C,N)-based cermets were investigated. Isothermal oxidation of all four cermets were also investigated in air at 800°C up to 100 h using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD). The grains of Ti (C,N)-based cermets became more homogeneous with the increase of WC content. The TRS and fracture toughness increased with the increase of WC content and then decreased when WC content exceeded 6wt%, but hardness decreased continuously with the increase of WC content. The oxide scales formed on the surface of all four samples during the oxidation process were porous and multi-layered, consisting of NiO outerlayer and TiO2 based innerlayer, respectively. The thickness of the oxide scales and oxidation rates increased with the increase of WC content, especially when the content of WC addition reached 9wt%. The cermet with 6wt% WC addition showed excellent mechanical properties and acceptable high temperature oxidation resistance.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


Author(s):  
ZHAO ZHANG ◽  
JIANING LI ◽  
ZHIYUN YE ◽  
CAINIAN JING ◽  
MENG WANG ◽  
...  

In this paper, the high-temperature oxidation resistant coating on the TA15 titanium alloy by laser cladding (LC) of the KF110-B4C-Ag mixed powders was analyzed in detail. The scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) images indicated that a good metallurgy bond between the fabricated coating/TA15 was formed; also the fine/compact microstructure was produced after a cladding process. The oxidation mass gain of TA15 was higher than that of the coating after LC process, which were 3.72 and 0.91[Formula: see text]mg[Formula: see text]cm[Formula: see text], respectively, at 60[Formula: see text]h, greatly enhancing the high temperature oxidation resistance.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2104 ◽  
Author(s):  
Hediyeh Dabbaghi ◽  
Keyvan Safaei ◽  
Mohammadreza Nematollahi ◽  
Parisa Bayati ◽  
Mohammad Elahinia

In this study, the effect of the addition of Hf on the oxidation behavior of NiTi alloy, which was processed using additive manufacturing and casting, is studied. Thermogravimetric analyses (TGA) were performed at the temperature of 500, 800, and 900 °C to assess the isothermal and dynamic oxidation behavior of the Ni50.4Ti29.6Hf20 at.% alloys for 75 h in dry air. After oxidation, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to analyze the oxide scale formed on the surface of the samples during the high-temperature oxidation. Two stages of oxidation were observed for the NiTiHf samples, an increasing oxidation rate during the early stage of oxidation followed by a lower oxidation rate after approximately 10 h. The isothermal oxidation curves were well matched with a logarithmic rate law in the initial stage and then by parabolic rate law for the next stage. The formation of multi-layered oxide was observed for NiTiHf, which consists of Ti oxide, Hf oxide, and NiTiO3. For the binary alloys, results show that by increasing the temperature, the oxidation rate increased significantly and fitted with parabolic rate law. Activation energy of 175.25 kJ/mol for additively manufactured (AM) NiTi and 60.634 kJ/mol for AM NiTiHf was obtained.


Sign in / Sign up

Export Citation Format

Share Document