Study of Tool Electrode Wear in EDM Process

2015 ◽  
Vol 669 ◽  
pp. 302-310 ◽  
Author(s):  
Ľuboslav Straka ◽  
Slavomíra Hašová

Technology of Electrical Discharge Machining (EDM) uses thermal energy in material removal, in which is the electrical energy transformed, generated between the electrodes (tool and workpiece). The material removal occurs through the rapid periodic repetitive electrical discharges in the presence of dielectric fluid. By the action of electrical discharges occurs to decline not only particles of a metal workpiece material, but also to decline in a certain proportion of metal particles in tool electrode. The paper deals with the diagnosis the size of the electrode wear of tools made from copper and graphite used in EDM machining.

2017 ◽  
Vol 756 ◽  
pp. 96-106
Author(s):  
Ľuboslav Straka ◽  
Slavomíra Hašová

The paper describes the basic physical regularities of material removal in Electrical discharge machining (EDM) of tool steel. One of the parameters, that material removal regularities quite accurately identifies, is the tool wear rate (TWR). This parameter, however, describes only the regularities concerning the tool electrode wear. More complex parameter for assessing regularities of material removal in EDM is thus electrode wear ratio (EWR). This parameter, except the size of the wear of the tool electrode, also describes the size of the workpiece material removal. Research on material removal was carried out on samples made out of tool steel EN X32CrMoV12-28 using Cu-ETP electrode EN CW004A. Aim of this paper was also based on the selection of main process parameters that significantly influence the material removal in EDM to define the individual specifics with regard to minimizing EWR.


2014 ◽  
Vol 592-594 ◽  
pp. 2513-2517
Author(s):  
S.P. Sivapirakasham ◽  
S. Thiyagarajan ◽  
Jose Mathew ◽  
M. Surianarayanan ◽  
A.S. Sathya Sai Nathan

Emission of toxic substances is the major occupational and environmental problem associated with this process. These emissions may cause adverse health effects to the operators and has the direct impact on the environment. The present investigation was conducted to study together the environmental and machining aspects of EDM process. The work aims to investigate the emission and machining parameters in EDM process using different workpiece material viz; like aluminum, mild steel and AISI-D3 tool steel with EDM 30 as a dielectric fluid and brass as a electrode. The results showed that the aluminium workpiece material gave a higher emission rate and MRR compared with mild steel and AISI D3 tool steel due to the low melting and boiling temperature. Among the process parameters, peak current and pulse duration was found to strongly affect the emission and performance aspects.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2020 ◽  
Vol 996 ◽  
pp. 131-136
Author(s):  
Yao Li ◽  
Cheng Cui ◽  
Bengang Lin ◽  
Li Li

Inconel718 has been widely used in various fields for its good performance, but it is difficult to machine with traditional machining methods. Electrical discharge machining is an alternative competitive process to machine Nickel-based alloys by electrical erosion. In order to improve reduce the electrode loss and improve the machining efficiency, the horizontal ultrasonic vibration of the workpiece and the cryogenic cooling of the tool electrode were applied into the EDM process. Material removal efficiency, surface roughness, surface topography, and microhardness have been characterized.


2014 ◽  
Vol 611-612 ◽  
pp. 650-655 ◽  
Author(s):  
Laurenţiu Slătineanu ◽  
Margareta Coteaţă ◽  
Hans Peter Schulze ◽  
Oana Dodun ◽  
Irina Besliu ◽  
...  

Electrical discharge machining uses the pulse electrical discharges generated between the closest asperities existing on the workpiece surface and the active surface of the tool electrode in dielectric fluid. Essentially, some distinct electrical discharge machining schemas could be used in order to obtain cylindrical external surfaces; within this research, one preferred a machining schema based on the use of a cooper plate in which there were small diameter holes, by taking into consideration the existence of a ram electrical discharge machine. The results of the machining process analysis were presented. A thin copper was considered to be used as tool electrode, in order to diminish the spurious electrical discharges, able to generate shape errors of the machined surface. Some experimental researches were developed by changing the sizes of the process input parameters. As output factors, the test piece and tool electrode masses decreases were considered. Power type empirical mathematical models were determined, in order to highlight the influence exerted by the pulse on time, off time and machining process duration on the output parameters values.


Author(s):  
Jin Zhang ◽  
Fuzhu Han

Abstract This paper proposed a new method of high-speed electrical discharge machining (EDM) using rotating short arcs under composite field. By the Lorentz force, the electric force and the high-speed rotation of the tool electrode, rotating short arcs are generated between the tool electrode and the workpiece, which can greatly improve the material removal rate of difficult-to-cut materials such as titanium alloys and superalloys. Firstly, the machining equipment used to generate rotating short arcs was constructed. Secondly, single arc discharge experiment was carried out to investigate the motion characteristics of rotating short arcs. The result shows that the arcs can rotate between the tool electrode and workpiece under composite field. Then, the experiment of processing GH4169 was conducted to explore the machining characteristics of rotating short arcs milling, which indicated that rotating short arcs can achieve a much higher material removal rate (MRR). Additionally, it’s found that the magnetic field also has influence on debris, which is beneficial to debris removal. Finally, a comparative experiment was carried out. The MRR of rotating short arcs milling was three times than that of traditional EDM, and the tool electrode wear rate (TEWR) is only one-fifth of that of traditional EDM. The comparative experiment further verified that rotating short arcs milling can achieve higher MRR and lower TEWR.


2014 ◽  
Vol 941-944 ◽  
pp. 2127-2133 ◽  
Author(s):  
Nirdesh Ojha ◽  
Florian Zeller ◽  
Claas Mueller ◽  
Holger Reinecke

The ability to machine advanced ceramic materials such as ZrO2, SiC, and AlN is of high interest for various industries because of the extraordinary material properties that these ceramics possess. Once sintered, these ceramics are characterized with high mechanical strength, high thermal stability and high chemical inertness. Therefore it is extremely difficult to machine these ceramics with dimensions in few microns using traditional techniques. Electrical discharge machining (EDM) is an electro-thermal machining process used to structure conductive materials. By applying a conductive layer on top of the non-conductive material, the EDM process can also be used to machine the non-conductive material. This paper presents a study on the effect of tool polarity and tool rotation on the material removal rate and electrode wear ratio during the EDM process of non-conductive SiC, ZrO2 and AlN ceramics. The reasons for the variation in the material removal rates among the different ceramics are examined by comparing the material properties. Relatively lower value of flexural strength, fracture toughness and melting temperature is the reason for AlN ceramic to have the higher MRR than SiC and ZrO2 ceramics.


2014 ◽  
Vol 903 ◽  
pp. 51-55 ◽  
Author(s):  
Alexis Mouangue Nanimina ◽  
Ahmad Majdi Abdul Rani ◽  
Mohd Amri Lajis ◽  
Turnad Lenggo Ginta ◽  
T.V.V.L.N. Rao

Shape of workpiece, electrode orientation and flushing system play important role in electrical discharge machining (EDM) process. Low material removal rate and relatively high electrode wear ratio are some of the disadvantages of EDM process. This can be due to the flushing modes. Workpiece shape has a significant effect in effectiveness of dielectric flushing flow and orientation during EDM process. This research work is conducted to analyze the influence of various workpiece shapes. Square cavity, L shape, flat shape and U shape were machined with same cross-section electrode material. Test parameters are material removal rate (MRR) and electrode wear ratio (EWR). Experiment results show slight difference in MRR and EWR values for different shapes. U shape presents the highest MRR and the lowest EWR occurs in flat shape compared to cavity and L shapes. It can be concluded that flat and U shapes result in good EDM machining quality due to good dielectric flow and flushing conditions in the area of EDM machining.


2012 ◽  
Vol 504-506 ◽  
pp. 1189-1194 ◽  
Author(s):  
Laurenţiu Slătineanu ◽  
Hans Peter Schulze ◽  
Oana Dodun ◽  
Margareta Coteaţă ◽  
Lorelei Gherman ◽  
...  

As consequence of the development of electrical discharge machining process, the electrode is affected by wear; knowing the evolution of the electrode wear, a better estimation of its service life is possible. It is expected that the electrode wear depends on the energy of the electrical discharges and the mass of the electrode. It is known also that the nature of the workpiece material exerts influence on the evolution of the electrode wearing process. In the paper, some theoretical considerations are used to highlight the above mentioned aspects. A set of experimental tests was designed and developed in order to highlight the influence exerted by the nature of the workpiece material and by the size of the cross section of the electrode, respectively, on the electrode wear. Empirical mathematical models corresponding to the evolution of the electrode wear were established.


Sign in / Sign up

Export Citation Format

Share Document