The Porosity Description in Hypoeutectic Al-Si Alloys

2016 ◽  
Vol 682 ◽  
pp. 83-90 ◽  
Author(s):  
Bartłomiej Dybowski ◽  
Łukasz Poloczek ◽  
Andrzej Kiełbus

Al-Si alloys are the most important group among aluminum casting alloys. They are widely used in automotive and aerospace industries. Chemical modification of the Al-Si alloys leads to formation of fine, fibrous Al-Si eutectic mixture ensuring high mechanical properties. The modification is however known to increase the alloy porosity, which may, in turn, result in decrease of its properties. The following paper presents results of the research on quantitative description of the Al-Si cast alloys porosity and influence of Na modification on the porosity of AlSi9Mg alloy. Porosity in the hypoeutectic Al-Si alloys occurs in four types: shrinkage cavities, shrinkage porosity, isolated gas pores and gas pores surrounded by shrinkage porosity. Na modification leads to increase of shrinkage pores volume fraction.

2013 ◽  
Vol 197 ◽  
pp. 125-130
Author(s):  
Bartłomiej Dybowski ◽  
Robert Jarosz ◽  
Andrzej Kiełbus

Magnesium alloys are widely used in aerospace and automotive industry due to their low density, good mechanical properties and good castability. The paper presents results of the castability tests and microstructural investigations on two unmodified magnesium casting alloys, Elektron 21 and QE22. Spirals for the castability test were poured from three temperatures: 755°C, 800°C and 835°C. Volume fraction of eutectic regions and grain size in both alloys were quantitatively evaluated. Castability increased with increasing pouring temperature. Quantity of eutectics and grain size did not show straight correlation with pouring temperature.


2013 ◽  
Vol 765 ◽  
pp. 59-63 ◽  
Author(s):  
Stefano Ferraro ◽  
Giulio Timelli ◽  
Alberto Fabrizi

In secondary die cast Al alloys, Bismuth is generally considered an impurity element and present as a trace element in commercial foundry alloys. In the present work, the influence of different Bi content on the microstructure and mechanical properties of a commercial die cast AlSi9Cu3(Fe) alloy is investigated. The Bi level ranges between 0.015 and 0.3 wt.%. The results show that the presence of Bi seems to not produce significant changes in the microstructure and mechanical properties. Fine Bi-rich compounds are observed in the die cast alloys and they are mainly distributed in the interdendritic regions and along grain boundaries. TEM investigations revealed a complex Bi-Bi2Mg3eutectic structure, which presents mainly rod-type and blocky morphology.


Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract APEX TERNALLOY 6 is one of a family of three APEX aluminum casting alloys (See APEX TERNALLOY 5, A1-273, November 1986.). It can be hardened by aging at room temperature and offers high mechanical properties. It has good castability, excellent machinability and high resistance to corrosion. Its many uses include aircraft components, gears, machinery parts, fittings, valves and ornamental products. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: Al-277. Producer or source: Apex International Alloys Inc..


2012 ◽  
Vol 706-709 ◽  
pp. 408-413
Author(s):  
Elena Ivanova ◽  
Damir Tagirov ◽  
Rustam Kaibyshev

Effect of liquid hot isostatic pressing (LHIP) on structure and mechanical properties of an A356.0 alloy was examined. Samples from this alloy were produced by gravity die castings. Part of these samples was subjected to homogenization annealing, and the other part was subjected to LHIP following homogenization annealing. All samples were water quenched from the temperature of prior homogenization annealing or LHIP and finally aged. It was shown that the LHIP processing leads to increase in yield stress, ultimate stress and total elongation. A significant increase in fatigue strength and decreased the scattering of fatigue data takes place too. This is caused by the fact that the fatigue crack initiation mostly occurs on lateral surfaces of the samples subjected to LHIP, whereas shrinkage voids in the non-hipped condition play a major role in crack initiation. In addition, crack propagation under fatigue occurs in samples subjected to LHIP in essentially ductile manner. Thus, LHIP eliminating shrinkage porosity enhances significantly mechanical properties and reliability of aluminum casting.


2012 ◽  
Vol 191 ◽  
pp. 137-144 ◽  
Author(s):  
Bartlomiej Dybowski ◽  
Robert Jarosz ◽  
Andrzej Kiełbus ◽  
Jan Cwajna

Magnesium alloys are widely used in automotive and aerospace industries due to their great connection of low density and good mechanical properties. They are also characterized by good castability and weldability. Their weak high temperature properties and corrosion resistance, led to development of magnesium alloys containing rare earth elements. Casting is the most popular way of manufacturing magnesium elements. However, there is a lack of investigations concerning impact of different factors on fluidity of these alloys. This paper presents results of investigations on influence of pouring temperature on castability and microstructure of QE22 and RZ5 magnesium alloys. In case of QE22 alloy, the filling length of the liquid alloy increased with the increasing pouring temperature. In RZ5 no such dependence was noted. This is probably caused by oxide films in the structure of material. Grain refinement and eutectics volume fraction also didn’t present correlation with pouring temperature.


2016 ◽  
Vol 682 ◽  
pp. 69-76 ◽  
Author(s):  
Łukasz Poloczek ◽  
Bartłomiej Dybowski ◽  
Andrzej Kiełbus ◽  
Michał Łuszczak

The following paper presents results of the researches on the influence of Sr addition on microstructure and mechanical properties of EN AC-Al Si9Cu3(Fe) HPDC alloy. Two different elements were high pressure die cast for the research, one with Sr addition, second one without. Investigations involved light and scanning electron microscopy as well as hardness and tensile testing. EN AC-Al Si9Cu3(Fe) HPDC alloy microstructure is characterized by a fine dendrites of α-Al solid solution and AlSi binary eutectic mixture. What is more, many intermetallic phases are observed in the alloy. These are: α-Al15(Fe,Mn,Cr)3Si2, β-A5FeSi, A2Cu, π-A8Mg3FeSi6 and Q-Al5Mg8Cu2Si6. Sr modified alloy is characterized by a significant volume fraction of fine, fibrous AlSi-eutectic. The porosity in the modified alloy slightly decreased. Mechanical properties of the alloy increased after Sr modification.


2011 ◽  
pp. 899-906
Author(s):  
Mostafa karamouz ◽  
Masoud Emamy ◽  
Jafar Rasizadeh ◽  
Mortaza Azarbarmas ◽  
Mohammad Alipour

Sign in / Sign up

Export Citation Format

Share Document