Influence of Pouring Temperature on Castability and Microstructure of QE22 and RZ5 Magnesium Casting Alloys

2012 ◽  
Vol 191 ◽  
pp. 137-144 ◽  
Author(s):  
Bartlomiej Dybowski ◽  
Robert Jarosz ◽  
Andrzej Kiełbus ◽  
Jan Cwajna

Magnesium alloys are widely used in automotive and aerospace industries due to their great connection of low density and good mechanical properties. They are also characterized by good castability and weldability. Their weak high temperature properties and corrosion resistance, led to development of magnesium alloys containing rare earth elements. Casting is the most popular way of manufacturing magnesium elements. However, there is a lack of investigations concerning impact of different factors on fluidity of these alloys. This paper presents results of investigations on influence of pouring temperature on castability and microstructure of QE22 and RZ5 magnesium alloys. In case of QE22 alloy, the filling length of the liquid alloy increased with the increasing pouring temperature. In RZ5 no such dependence was noted. This is probably caused by oxide films in the structure of material. Grain refinement and eutectics volume fraction also didn’t present correlation with pouring temperature.

2013 ◽  
Vol 197 ◽  
pp. 125-130
Author(s):  
Bartłomiej Dybowski ◽  
Robert Jarosz ◽  
Andrzej Kiełbus

Magnesium alloys are widely used in aerospace and automotive industry due to their low density, good mechanical properties and good castability. The paper presents results of the castability tests and microstructural investigations on two unmodified magnesium casting alloys, Elektron 21 and QE22. Spirals for the castability test were poured from three temperatures: 755°C, 800°C and 835°C. Volume fraction of eutectic regions and grain size in both alloys were quantitatively evaluated. Castability increased with increasing pouring temperature. Quantity of eutectics and grain size did not show straight correlation with pouring temperature.


Alloy Digest ◽  
1982 ◽  
Vol 31 (3) ◽  

Abstract ALUMINUM 520.0 is an aluminum-magnesium casting alloy containing nominally 10% magnesium. It is characterized by an excellent combination of machinability, mechanical properties and resistance to corrosion. Typical applications are railroad passenger car frames and marine parts. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-237. Producer or source: Various aluminum companies.


2016 ◽  
Vol 854 ◽  
pp. 51-56 ◽  
Author(s):  
Roland Hoppe ◽  
Gerrit Kurz ◽  
Dietmar Letzig

Magnesium alloys containing rare earth elements have better properties in terms of of formability, strength and corrosion resistance. Due to the tight supply situation these elements should be partially or complete substituted, for example by calcium. Microstructural studies of casted alloys of new compositions, and the influence of various heat treatments on their microstructure are investigated. The mechanical properties of the rolled materials are also presented and discussed. The works presented in this paper are results of the ongoing BMBF project SubSEEMag.


2015 ◽  
Vol 227 ◽  
pp. 79-82
Author(s):  
Andrzej Kiełbus ◽  
Joanna Michalska ◽  
Bartłomiej Dybowski

<p>Magnesium alloys are widely used mainly in automotive and aerospace industries. There is quite a lot of information about corrosion of the magnesium alloys in available literature. However, the publications concern mainly Mg-Al alloys, while there is a lack of information about Mg-RE-Zr alloys. The following paper presents results of the investigations on the electrochemical corrosion of magnesium casting alloys containing rare earth elements (WE43, WE54, EV31A-Elektron 21) as well as pure magnesium. The alloys were investigated by immersion test in 3.5% NaCl for times up to 7 days. Electrochemical investigations were carried out at ambient temperature in aerated NaCl solution, using potentiodynamic polarization method. It has been shown that the best corrosion resistance is exhibited by alloys with yttrium addition (WE43, WE54), while the weakest by pure magnesium. EV31A alloy exhibits the highest corrosion rate during the immersion test, while WE54 and WE43 alloys had a similar corrosion behavior.</p>


2013 ◽  
Vol 747-748 ◽  
pp. 470-477
Author(s):  
Rui Dong Liu ◽  
Xu Guang Dong ◽  
Fu Jun Wei ◽  
Yuan Sheng Yang

The effects of minor Al and Ce on the microstructures, room-temperature and high-temperature mechanical properties of as-cast Mg-6Zn magnesium alloys were investigated. With the Al addition into Mg-6Zn alloy, the coarse eutectic Mg51Zn20phases were refined and distributed discontinuously. After adding 0.5wt.% Ce into Mg-6Zn-1Al alloy, a new needle-like Al2CeZn2phase was observed. Meanwhile, the volume fraction of Mg51Zn20phase decreased and the semi-continuous Mg51Zn20phase became discontinuous globular morphology. It has been observed that the addition of Ce element coarsens the grains, and 1wt.% Al addition enhanced the yield strength and ultimate strength from 86.35MPa, 229MPa to 90.7MPa, 238MPa, respectively. Moreover, the Ce addition can significantly increase the high-temperature mechanical properties of cast Mg-6Zn-1Al alloy.


2014 ◽  
Vol 633-634 ◽  
pp. 82-85
Author(s):  
Xin Hong Xiong ◽  
Dun Miao Quan ◽  
Jia Lin Chen ◽  
Qiao Xin Zhang ◽  
Yun Chen

Rare earth magnesium alloys and Mg-Zn-Cu alloys were prepared by gravity casting and direct squeezing casting respectively, and the corrosion performances of three kinds of Mg-Zn-Cu alloys were compared in this paper. The results indicate that adding rare earth elements and direct squeezing casting process can significantly increase the mechanical properties of magnesium alloys, and aluminum can improve the corrosion resistance of magnesium alloys.


Alloy Digest ◽  
1962 ◽  
Vol 11 (3) ◽  

Abstract ALUMINUM 220 is a 10% magnesium-aluminum casting alloy having the highest combination of mechanical properties, corrosion resistance and machinability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-112. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract ALUMINUM 2011 is an age-hardenable aluminum-copper alloy to which lead and bismuth are added to make it a free-machining alloy. It has good mechanical properties and was designed primarily for the manufacture of screw-machine products. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-32. Producer or source: Various aluminum companies. Originally published October 1955, revised December 1978.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


Alloy Digest ◽  
2015 ◽  
Vol 64 (9) ◽  

Abstract Elektron EQ21 is a casting high strength magnesium alloy developed as a heat treatable alloy with rare earth element additions. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive, shear, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Mg-80. Producer or source: Magnesium Elektron Wrought Products, North America.


Sign in / Sign up

Export Citation Format

Share Document